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Energy efficiency and renewable energy become more attractive in smart grid. In 

order to efficiently reduce global energy usage in building energy systems and to improve 

local environmental sustainability, it is essential to optimize the operation and the 

performance of combined heat and power (CHP) systems. In addition, intermittent 

renewable energy and imprecisely predicted customer loads have introduced great 

challenges in energy-efficient buildings' optimal operation. 

In the deterministic optimal operation, we study the modeling of components in 

building energy systems, including the power grid interface, CHP and boiler units, energy 

storage devices, and appliances. The mixed energy resources are applied to 

collaboratively supply both electric and thermal loads. The results show that CHP can 

effectively improve overall energy efficiency by coordinating electric and thermal power 

supplies. Through the optimal operation of all power sources, the daily operation cost of 

building energy system for generating energy can be significantly reduced. 

In order to address the risk due to energy consumption and renewable energy 

production volatility, we conduct studies on both stochastic programming and robust 
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optimizations to operate energy-efficient building systems under uncertainty. The multi-

stage stochastic programming model is introduced so that the reliable operation of 

building energy systems would be probabilistically guaranteed with stochastic decisions. 

The simulation results show that the stochastic operation of building systems is a 

promising strategy to account for the impact of uncertainties on power dispatch decisions 

of energy-efficient buildings.  

In order to provide absolute guarantee for the reliable operation of building 

energy systems, a robust energy supply to electric and thermal loads is studied by 

exploring the influence of energy storage on energy supply and accounting for 

uncertainties in the energy-efficient building. The robustness can be adjusted to control 

the conservativeness of the proposed robust operation model.  

For the purpose of achieving adaptability in the robust optimal operation and 

attaining robustness in the stochastic optimal operation of building energy systems, we 

also develop an innovative robust stochastic optimization (RSO) model. The proposed 

RSO model not only overcomes the conservativeness in the robust operation model, but 

also circumvents the curse of dimensionality in the stochastic operation model. 
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1 

CHAPTER I 

INTRODUCTION 

1.1 Background 

In recent years, the energy industry has experienced the transformation from 

traditional electric grid to smart grid. The advanced electric technologies in smart grid 

play a significant role in improving the efficiency of power generation and transformation 

[1]. In the renewable energy industry, distributed generation (DG) is applied at the 

individual consumer level as one of environment friendly energy resources. 

In smart grid, buildings are powered by a hybrid energy supply system integrated 

with on-site electricity generation from solar, combined heat and power system (CHP). 

Figure 1.1 shows the various energy resources of an energy-efficient building system in 

smart grid. 
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Figure 1.1 Smart building energy systems [2] 

 

Solar energy is so far the most popular renewable energy technology at the 

individual customer level. While keeping home comforts without having to pay the 

increased fees for these comforts, customers only pay for the amount of energy that the 

photovoltaic (PV) system is unable to supply. Solar power is successfully and widely 

used in buildings around the world. The reason that PV is popular in Europe is partially 

because of the creative and practical use of PV by integrating it into a building, namely 

Building Integrated Photovoltaics (BIPV) [3]. Plugging renewable energy into home 

buildings is a smart strategy to save energy usage. Solar increases the energy efficiency 

in buildings by reducing the energy consumption at home. BIPV will potentially become 

one of the main uses of PV next to utility scale power generation because it can be 

dynamically used in almost any building design.  

Energy efficiency technologies have been promising in improving the energy 

consumption performance of buildings. CHP, known as self-production facility or 
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cogeneration unit, generate power and thermal energy at the same time. It is an approach 

for conventional power generation systems to recover the heat remaining in exhaust 

gases, cooling system. CHP systems are useful to overcome the drawback of intermittent 

power supply from renewable energy and unpredictable energy consumption, and have 

proven to be beneficial for energy performance of utility grid in many industrial 

situations through increasing the total thermal efficiency, reducing the overall power 

demand, and providing higher quality as well as more reliable power [4]. Therefore, 

applying CHP technology to utility grid is an attractive option [5]-[9].  

1.2 Objectives and approaches 

With the integration of renewable energy resources, smart grid has introduced 

great challenges in building energy systems. Despite the significant capital cost 

reductions for renewables, the volatile power generation of the solar PV system is the 

most critiqued of solar technologies [10]. The existing balance between energy 

production and consumption is significantly affected by these new sources [11]. These 

uncertainties may result in increased risk in energy supply for power systems. The system 

operators should consider the uncertainties from power produced by renewable energy 

sources in building energy systems.  

Building energy consumption is not only impacted by intermittent solar power 

generation but also by the fluctuating energy consumption [12]. Accurate load forecasting 

technique is essential to achieve efficient load management in buildings. Trustworthy 

power demand forecasting method (energy demand forecast) must be provided to achieve 

reliable power generation. However, the forecastability of demand is largely dependent 

on the demand volatility. The actual demand of individual buildings varies over time, 
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depending on the outside temperature seasons and end-user behavior. Load forecasting 

technique, which has been studied for decades [13], is still a big concern for the operation 

of buildings because of the inaccurate prediction of non-controllable electric and thermal 

loads. 

In summation, these uncertain factors from the integration of renewable energy 

and random energy consumption are the major sources of disturbance for the optimal 

operation of building systems, including non-controllable electric and thermal loads, as 

well as solar power generation. In order to minimize energy import/export expenses 

under uncertainty, it is necessary to determine the power production for the utility grid 

from various energy sources including electric grid, battery, and CHP with boiler unit. 

Energy-efficient building systems with the integration of renewable generation 

are becoming more and more popular worldwide. In order to address the risk due to 

energy consumption and renewable energy production volatility, the optimal operation 

problem of building systems integrated with CHP units will be modeled through both 

stochastic programming and robust optimization. The models incorporated the uncertain 

characteristics of solar energy as well as electric and thermal demand to predict CHP 

systems operation and performance. 

Firstly, taking into account the randomness of future non-controllable electric and 

thermal load as well as solar power production through the multi-stage scenario tree, a 

multi-stage mixed-integer stochastic programming model for optimal operation of 

energy-efficient buildings is presented. The simulation results can offer a set of adaptive 

decision solutions within the scheduling horizon. 
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To account for the effect of variable solar power and imprecise energy 

consumption, the case studies for stochastic operation of building energy systems are 

designed to 

 Build a multi-stage stochastic model for the energy-efficient building 

system with CHP systems under uncertainties; 

 Generate the multivariate stochastic scenario tree by backward reduction 

technology; 

 Compare the load supply due to the impact of CHP systems;  

 Investigate the operation and performance of CHP systems due to the 

impact of battery devices and controllable loads; 

 Explore the impact of interruptible and non-interruptible loads on the 

optimal energy management of building energy systems. 

Secondly, a robust energy supply to electric and thermal loads is studied by 

exploring the influence of energy storage on energy supply and accounting for 

uncertainties in the energy-efficient building. The tasks of robust operation of energy-

efficient buildings are to 

 Establish the robust optimization model for the operation problem of 

energy-efficient building system with CHP under uncertainties; 

 Conduct robust case studies to investigate the effectiveness of the CHP 

unit and battery in alleviating the influence of uncertainties; 

 Adjust the robustness parameter of the robust optimal operation model 

against the conservativeness of the robust solution on the energy supply. 
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Thirdly, to improve the robustness of stochastic solutions and to reduce the 

computation burden at the same time, a robust stochastic optimization (RSO) technique 

differing from those two methods is needed.  

This RSO model minimizes the expected operating cost of worst-case scenarios at 

each time stage. The tasks of robust stochastic operation of energy-efficiency buildings 

are to 

 Formulate the robust stochastic optimization model by introducing penalty 

terms in constraints, which in turn reflects the cost volatility due to the 

uncertain solar power generations, electric and thermal loads;  

 Establish the multiband uncertainty set through the multi-stage scenario 

tree so that the combination of all the individual uncertainty sub-bands can 

cover the complete uncertainty set; 

 Compare the building energy solutions of the robust stochastic model with 

those obtained from both the stochastic and robust models. 

1.3 Literature review of demand-side management  

At the individual consumer side, demand side management (DSM) is to control 

energy consumption and reduce the cost of purchasing electrical energy for consumers 

[14]. It can be realized through a set of effective measures shown in Figure 1.2. For 

example, in the smart grid industry, Honeywell has been developed advanced electric 

devices to reduce the US’s energy consumption at demand side (Figure 1.3).  
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Figure 1.2 Demand side management for residential electrical loads profile [15] 

 

 

Figure 1.3 Honeywell’s strategy in solving today’s smart grid problem [16] 

 

Based on the customers’ priorities and the energy consumption profiles of 

individual building appliances, Z. Zhu etc. [1] proposed an optimization mechanism for 

the scheduling of power-shiftable and time-shiftable appliances at the demand side. The 



www.manaraa.com

 

8 

proposed approach was achieved through the minimization of the hourly peak load with 

integer linear programming algorithm. 

T. T. Kim etc. [17] solved the scheduling power consumption problem at the 

consumer’s side. The uncertain price of electricity was considered through a Markov 

decision process. The decisions were the optimal scheduling for both non-interruptible 

and interruptible loads. The real time data from Commonwealth Edison (ComEd) was 

demonstrated to show the effectiveness of the proposed method. 

To maximize the utilization of energy from the electric grid and a distributed 

energy resource (DER), M. Rahimiyan etc. [18] proposed an energy management 

algorithm for a cluster of interconnected price-responsive demands. The robust 

optimization was presented to account for the uncertainty from the electricity price from 

the grid and the intermittent renewable power generation.  

Hai-Yun Helen Xing [19] aimed to reduce building loads while maintaining an 

acceptable level of comfort through a variety of simulation and optimization methods in a 

multi-objective optimization problem. The load shedding method was introduced to 

increase thermostats in a single building, which can lead to about 10W/m2 peak load 

reduction. Thermostat-based and night-cooling-based load control strategies are 

optimized as well. To reduce the total peak demand or the total cost in a small pool of 

two or three buildings, the effectiveness of load aggregation was also investigated. At 

last, the multi-building optimization problem was solved with a model-based approach. 

Z. Chen etc. [20] considered the real-time price uncertainty in the DSM at 

residential side. The price-based DR management is realized through smart meters. Both 

deferrable/non-deferrable and interruptible/non-interruptible appliances are considered in 
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the stochastic and robust models. They concluded that both stochastic and robust models 

reduce electricity bill cost compared with the flat rate electricity price. 

To schedule the Controllable Thermostatically Controlled Appliances (C-TCAs) 

loads in consumer level, Pengwei Du [21] presented a two-step appliance commitment 

algorithm. The proposed algorithm is adjustable to the optimal schedule taking into 

account thermal dynamics, random price, hot water consumption, and consumer comfort. 

P. Samadi etc. [22] proposed an optimal residential load control algorithm for 

demand side management in presence of load uncertainty. The purpose is to minimize the 

electricity bill of the users with the estimate of the future demand. The study results show 

that users are encouraged to participate in DSM due to the reduction of the energy cost. 

Meanwhile, Real-Time Pricing (RTP) tariffs introduce lower Peak-to-Average Ratio 

(PAR) of the aggregate load demand, which in turn encourage utilities to support the 

proposed algorithm. 

Through the optimal scheduling of building energy resources, X. Guan etc. [23] 

minimizes the overall energy cost of buildings. This method used the average 

performance over 100 scenarios for solar power generation, electrical, and cooling 

demands. 

B. Sun etc. [24] developed a Lagrangian relaxation methodology combined with 

stochastic dynamic programming. The proposed approach coordinated the control for 

building appliances and satisfied the requirements of energy reduction and human comfort.  

C. Chang etc. [25] solved the stochastic multi-objective optimization problem for 

CHP dispatch. The uncertainty from the electric power and thermal demands was taken 
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into account. The problem was solved by the goal attainment method with fuzzy logic 

and genetic algorithm. 

1.3.1 Energy efficiency and energy conservation 

Energy efficiency and energy conservation are two alternative ways to reduce 

both energy consumption and energy bills at the same time. Energy efficiency is defined 

as the need for rationalization of energy consumption without any loss in value or 

comfort [17]. The investment in technologies or building improvements will be paid back 

in the long term during the operation of the energy-efficient appliances.  

Energy conservation is to encourage customers to give up some comfort in 

exchange for saving money. The measures include setting the thermostat a few degrees 

higher in the summer or lower in the winter to reduce air conditioning use and costs. 

Energy conservation is more related to behavioral changes than technical improvements. 

For example, people could wash clothes only with cold water. 

1.3.2 Demand response 

Demand response (DR) is electrical energy management initiated by the supply 

side. Consumers take actions on the demand side but do not benefit directly from the 

supply side management which is designed specifically for the power supply company 

[14]. The time of electricity consumption and the peak duration are extremely relevant for 

determining the efficiency of the utilization of electrical equipments. In smart grid, 

demand response programs aim to adjust the timing and quantity of end-users' electricity 

consumption, which are elicited on the basis of variable electricity prices depending on 

the time of use and the load level [26]. DR benefits consumers and utility companies 
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from intelligent resource scheduling [27], integration of intermittent renewable solar 

generation sources and reduction of the peak load for buildings [28]-[35]. It can be 

realized through the utility control or energy management systems at the end-users’ 

facility.  

Load shifting transfers the energy consumption of building appliances from a 

certain period to another. It can be realized with a cost minimization strategy by 

providing customers with the information of time-of-use prices. Customers are penalized 

or rewarded by adjusting short-term episodes of energy consumption, which is essential 

to demand response programs. For example, consumers can run the clothes washer only 

at night with low energy price.  

The amount of bill reduction through load shifting depends on the rate structure 

[36]-[38]. Time of use (TOU) rates are predefined to respond on three levels, including 

off-peak, mid-peak, and on-peak, which is not flexible enough. Critical peak pricing 

(CPP) rates address the critical events during emergency periods or high wholesale 

market prices [39]. Peak-time rebates (PTR) rates include super peak periods as well, but 

customers are rewarded with a rebate on the basis of the usage reduction. 

The Residential Real Time Pricing (RRTP) program launched by ComEd-An 

Exelon Company, allows consumers to pay the hourly, wholesale price for electricity 

rather than a fixed price, taking advantage of lower prices during off-peak times [40]. Air 

conditioner cutout program permits participants select a price threshold (like 0.10 $/kWh) 

in order for the central air conditioner to be cycled in the scheduling period. Both 

programs would in turn lower the cost of delivering electricity for the utility.  
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However, not every facility is suitable to join in the demand response program 

even though it does introduce bill reduction in some cases [41]-[42]. For example, it is 

impossible for health care facilities to reduce their electrical loads without interfering 

with patient comfort or safety. Large information-technology centers are also unable to 

reduce sufficient loads without putting equipment at risk. Retail facilities may not be able 

to shut down air conditioning loads without compromising customer comfort. 

1.3.3 Smart metering 

In smart grid, advanced meters are used to provide real-time information for users 

to control their energy consumption patterns [43]. It allows homes to connect to data on 

usage and price. As shown in Figure 1.4, the smart meter offers the end user near-real 

time information from the supply side, which facilitates the demand-side energy 

management. It interacts dynamically with the utility grid in two ways, responds with 

information on usage and diagnostics. 
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Figure 1.4 A smart meter at a residence [15] 

 

PJM has two hourly pricing markets: real-time (RT) and day-ahead (DA) [44]. 

When less efficient (and often higher polluting) plants are needed to meet the demand, 

the real-time rates raise accordingly. The day-ahead pricing market is often a good 

indicator for the next-day real-time prices, as can be seen from Figure 1.5. From Figure 

1.6, the extra 5-minute pricing feed also provide customers with the most appropriate 

information to reflect the current hour’s potential price. The "current hour average" price 

reflects the real-time average of the current hour's 5-minute prices.  
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Figure 1.5 Real-time hourly prices for September 10th, 2014 [45] 

 

 

Figure 1.6 Current hour 5 minute prices for September 11th, 2014 [46] 

 

The decision on whether to go with smart metering depends on the size of the 

building, the flexibility of the end users’ in shifting electricity use, the intensity the 

customers use the electricity. For the average homeowner, a smart meter will increase the 

bill slightly, around a couple of percent. 

1.4 Contribution 

The main contributions of this dissertation are summarized as follows: 

 Introduce an optimization tool to economically schedule operation for all 

components in building energy systems under the utility grid 
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interconnection through a hybrid energy supply system integrated with 

onsite electricity generation from solar PV and CHP while satisfying a 

variety of end-use energy demands; 

 Propose both the multi-stage mixed-integer stochastic programming model 

and robust optimization model for the optimal operation of energy-

efficient building systems taking into account the random characteristics 

of non-controllable electric and thermal loads, and solar power 

generations. 

 Develop a robust stochastic optimization model, which not only possesses 

the scenario features of stochastic programming, but also introduces the 

idea of robustness by constructing a multiband uncertainty set for each 

random variable. The partition of the uncertain feasible region makes the 

solution robust and adaptive at the same time. 

1.5 Organization of the dissertation 

The rest of this dissertation is organized as follows: Chapter 2 describes stochastic 

programming and robust optimization to address optimization problems associated with 

uncertainties, Chapter 3 introduces the deterministic optimal operation of energy-efficient 

building systems, Chapter 4 discusses the stochastic optimal operation of energy-efficient 

building considering controllable electric and thermal loads, Chapter 5 addresses the 

optimal operation of energy-efficient building systems from the robust perspective, 

Chapter 6 proposes a robust stochastic optimization model for the optimal operation of 

building energy systems, Chapter 7 provides conclusions and suggestions for the future 

work. 
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CHAPTER II 

MATHEMATICAL BACKGROUND FOR OPTIMIZATION UNDER 

UNCERTAINTY  

This chapter presents the mathematical background for the optimal operation of 

energy-efficient building system. It starts with the formulation of two-stage and multi-

stage stochastic programming, then moves forward to the forecast and modeling of 

uncertainty. Moreover, the static and two-stage robust optimization are introduced, 

together with the proof of the equivalence of the static robust model and the two-stage 

robust model in the case of constraint-wise robust optimization. 

Uncertainties are mostly involved in decision-making problems. In general, the 

optimal operation of building systems is associated with uncertainty from electric loads, 

thermal loads and solar power generation. The evolution of each uncertainty is 

determined by several factors. For example, electric loads in buildings are influenced by 

the level of consumers’ activities, energy savings in general and electricity providers’ rate 

policies; the randomness of thermal loads is affected by the weather surrounding the 

building; the power output of a solar panel can be impacted by the radiation of the sun 

and the ambient weather [47]. 

In order to maximize the utilization of solar power production, we assume that the 

customer would take all available solar energy. This assumption benefits the customer 

from lower-price or no cost energy than that from the electric grid. 
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The characteristics of solar power generation and non-controllable loads for a 24-

hour horizon are shown in Figure 2.1, which are obtained from historic data. 

 

Figure 2.1 Daily non-controllable loads and solar power generation 

 

2.1 Stochastic mathematical programming techniques 

Stochastic programming studies the processes of decision making under 

uncertainty within a specific time period [48]. The solution to the stochastic 

programming problem provides probabilistic guarantee for the reliable operation of 

building energy systems under each realization of the uncertainty. 

Assume ߱௥ is the random event to be realized at stage r with the total ܬ௥ 

scenarios,	߭௥௝ indicates possible outcomes for ܭ uncertain variables, which consists of 

the uncertainty ݕ௞௥௝ at scenario j. The multivariate discrete random event ߦோ made up to 

stage r can be expressed as 

 1 1 2( , ) ( , ,..., )R R r r         (2.1) 
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Where { | 1,..., }r rj rj J    (2.2) 

 1( ,..., ,..., ), 1,...,rj rj krj Krjy y y k K    (2.3) 

We view the sequence of ߱௥ of data vectors as a stage-wise independent process 

if ߱௥ is stochastically independent of ߱௥ିଵ, ݎ ൌ 2,… , ܶ. 

Consequently, by considering certain time stages 1 ൑ ݐ ൑  ோ isߦ the scenario ,ݎ

defined by (2.4) as a sequence of nodes ݕ௞௧௝. Similarly, ߫ோ includes the scenarios to be 

realized between time stage r and T as shown in (2.5). 

 { }| 1, , ; 1,..., ; 1,...,
R ktj ty t r k K j J      (2.4) 

 { }| , , ; 1,..., ; 1,...,
R ktj ty t r T k K j J      (2.5) 

2.1.1 Two-stage stochastic model 

Generally, two-stage stochastic programing models have a structural part which is 

fixed at the first stage and independent of the uncertainty, and a recourse part dependent 

on the uncertainty at the second stage [49]. The two-stage stochastic programming 

problems are with the following form 

 
21 1 2 2 1[ ( , )]Min J c x E Q x    (2.6) 

s.t. 1 1 1W x h , 1 0x   (2.7) 

Where 2  is viewed as a random vector. The expected function at the problem (2.6)-(2.7) 

depends on the probability distribution of 2 . 2 2 1( , )Q x  is the optimal value of the 

second-stage sub-problem, which can be represented by the model  (2.8)-(2.9). 

 2 2 2( )Min c x  (2.8) 
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s.t. 1 1 2 2 2 2( )T x W x h   , 2 0x   (2.9) 

We are considering now the expected value function 

 
21 2 2 1( ) : [ ( , )]x E Q x   (2.10) 

Assume that 2 has a limited number of realizations associated with 

corresponding probabilities , 1, ,k k K   . Then  

 
2 2 2 1 2 2, 11[ ( , )] ( , )K

k kkE Q x Q x     (2.11) 

For a given 1x , the expectation 
2 2 2 1[ ( , )]E Q x   is defined as the optimal value of 

the linear programming problem 

 2 2, 2,1 ( )K
k k kkMin c x    (2.12) 

s.t. 1, 1 2, 2, 2, 2,( )k k k k kT x W x h    (2.13) 

 2, 0, 1, ,kx k K    (2.14) 

The two-stage stochastic problem (2.6)-(2.7) is equivalent to the following 

deterministic problem: 

 1 1 2 2, 2,1 ( )K
k k kkMin J c x c x     (2.15) 

s.t. 1 1 1W x h  (2.16) 

 1, 1 2, 2, 2, 2,( )k k k k kT x W x h    (2.17) 

 2, 0, 1, ,kx k K    (2.18) 
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2.1.2 Multi-stage stochastic model 

We now focus our attention on the multi-stage stochastic problem. Based on the 

historical event ߦோ	and the future occurrence ߫ோ,	the general multi-stage linear SP model 

is shown below [50], 

Stochastic (LP): 

 
21 1 2 2 2[ ( ) ... [ ( ) ]]

T T T TMin J c x E c x E c x       (2.19) 

s.t. 1 1 1Wx h   (2.20) 

 , 2,...,r rAx b r T   (2.21) 

 1 1 ( )r r r r r RT x W x h     , 1, ..., , 2, ...,R r r T   (2.22) 

 r rx X , 1, ...,r T  (2.23) 

where ݎ are the stages, each of which represents the beginning of each hour. ܺ௥ refers to 

deterministic, static linear constraints at stage r. ߦோ enters into the optimization model 

(2.19)-(2.23) through the costs ܿ௥ and the right-hand sides ݄௥. The vector 		ݔ௥ includes 

both “here-and-now” and “wait-and-see” decision variables at stage r. (2.21) represents 

intra-period constraints, which is the basic requirement of non-anticipativity. Non-

anticipative here-and-now decisions do not depend on the revealing of the uncertainty. 

The inter-period constraints (2.22) describe the random and time-coupling requirements.  

Multi-stage stochastic optimization looks for optimal solutions for problems with 

correlated dynamic and stochastic elements [51]. Typically, multi-stage stochastic 

programs minimize the expected cost value from first-stage variables and probable 
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recourse decisions [52]. From the dynamic programming viewpoint, the problem (2.19)-

(2.23) could be reformulated with a group of recourse function as.  

 
11 1 1( , ) [ ( , )]

rr r R r r r r RQ x Min c x E Q x 
     (2.24) 

s.t. 1 1( )r r r R r rWx h T x    , ,r rx X r T   (2.25) 

The terminal condition is 

 1( , )T T T T TQ x Min c x   (2.26) 

s.t. 1 1 ( )T T T T T TT x W x h     , T Tx X  (2.27) 

With the recursive equations (2.24)-(2.27), the dynamic form of the standard SP 

formulation (2.19)-(2.23) can be written as,  

 1 1 1 11
[ ( ) ( , )]

r

t t t r r Rt
Min E c x Q x    

  (2.28) 

s.t. 1 1 ( )r r r r r RT x W x h     , r rx X   (2.29) 

2.1.3 Auto-regressive moving average model 

In the following, the stochastic processes for the forecast error are generated by 

multivariate auto-regressive moving average (ARMA) time series model [53]-[61]. The 

aim is then to simulate realistic possible outcomes, which have the correct statistical 

behavior concerning forecast errors and correlation between different forecast errors. The 

time series in the ARMA (n, m) model is defined as 

 0 0jv   (2.30) 

 0 0jz   (2.31) 
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 1 1 2 2 1 1 2 2
j j j j j j j j

t t t n t n t t t m t mv v v v z z z z                     (2.32) 

Where ݒ௧
௝ is the forecast error in ݐ-hour forecast; ݖ௧

௝ is the normal white noise 

process with standard deviation ߪ௭; ߙ௜ for i=1,2,…,n is auto-regressive parameter; ߚ௜ for 

i=1, 2, …,m is moving average parameter. This approach simulates forecast errors. The 

forecast data takes into account of the correlation among the magnitude of forecast errors 

in consecutive time periods [62].  

2.1.4 Multi-stage scenario tree 

Within a specified forecast period, the scenarios of possible events are defined as 

a series of outcomes associated with probabilities. At this point, the multiple input 

scenarios with a probability tree were captured in Figure 2.2 [63], which represents 

hourly forecasts in the optimization period. Because the data forecast may be reliable till 

hour 1, so the process for the first stage is deterministic.  

 

Figure 2.2 Multi-stage scenario tree with probability 
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The scenario ߦ௧
௝ is defined as a sequence of nodes ߟ௧

௝.  

 0 1( , , , ), 1, ,
t

j j j
t T tj J       (2.33) 

Where ߟ଴ is the root of all scenarios, ܬ௧ is the number of scenarios at stage ݐ, ௧ܶ is 

the terminal time at stage ݐ. Therefore, each node ߟ௧
௝ has a vector parameter ݒ௧

௝ at 

different stages. ܬ௧ ൌ 1, ௧ܶ ൌ 1 when ݐ ൌ ௧ܬ	;1 ൌ 3, ௧ܶ ൌ 6 when ݐ ൌ ௌܬ ;2 ൌ 9, ௧ܶ ൌ 24 

when ݐ ൌ 3.  

Due to the large size of the resulting problem, it is usually impossible to explicitly 

consider the full scenario tree in the problem [49]. The multi-stage scenario tree 

generation consists of two major procedures [64]. The one-stage scenario tree generation 

involves the reduction of the pure number of scenarios. For the process of multi-stage 

scenario tree generation, both inner nodes will be deleted and branching will be created 

within the scenario tree. The process of one-stage scenario tree generation will be briefly 

described here.  

Step 1: Determine the scenario to be deleted. 

The scenario reduction for multiple variables can be reached by calculating the 

distance between different scenarios. 

 2 1 2

0

( , ) ( ( ) )
rT

j k j k
R R t t

t

d V V 


   (2.34) 

If the probability for scenario ߦ௧
௝ is given by ݌௧

௝, ݌௧,௧ାଵ
௝ is the transition probability 

from the ancestor of scenario ߦ௧ାଵ
௝  to ߦ௧ାଵ

௝ . 
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1

, 1
0

sT
j j

s m m
m

p p





   (2.35) 

The scenario ߦ௧
௤∗
ሺݍ∗ ൌ 1,… , ௧ܬ ሻ to be deleted can then be determined if 

satisfying 

 
1,..., , 1,..., ,1,...,
min ( , ) ( min ( , ))

s ss

q q q j j k
s s s s s s s s

q J k Jj J
k jq q

p d Min p d   
 


 



     (2.36) 

Step 2: Renew the probability of the scenario ߦ௦
௤ത  nearest to the deleted one.  

 
1,..., ,

( , ) ( , )
s

q q q q
s s s s s s

q J q q
d Min d   

 

 
   (2.37) 

 0,1 0,1 0,1
q q qp p p



   (2.38) 

Step 3: Change the number of scenarios. 

 : 1t tJ J    (2.39) 

For the second procedure, steps for creation of a multi-stage scenario tree include 

1) Set s to be the actual stage with the terminal time ௦ܶ ; 

2) Determine the series of admissible nodes ݍ∗  whose inner nodes have to be 

deleted; 

 
111

1 1

, 1 1 1 1 , 1 1 1 11,..., ,1,...,1,..., ,0 0

{ } ( , ) {{ } min ( , )}
sss

s s
q q q j j k
k k s s s k k s s sk J k jj Jq J q qk k

p Min d Min p d   
 




 

          

 

  (2.40) 

3) Delete the inner nodes from the set of nodes on each stage of the tree; 

4) Determine the new predecessors ݍത of the last node with two branches; 
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1

1 1 1 1 1 1 1
1,..., ,

( , ) { ( , ) : ( ) 2}
s

q q q q q
s s s s s s s

q J q q
d Min d s    

 




      
 

    (2.41) 

5) The deleted nodes ݍ∗  on the stages 1, 2, 3 are then changed to equal the 

corresponding nodes ݍത in the predecessor; 

6) Change the probabilities; 

 1, 0,1 0,1 0,1: ( )q q q q
s sp p p p



     (2.42) 

 1, 0,1 0,1 0,1: ( )q q q q
s sp p p p
  

     (2.43) 

7) Set s:=s-1 and return to 2) until more inner nodes have to be deleted at the 

actual stage. 

2.2 Robust optimization 

2.2.1 Interval uncertainty set model 

Let’s consider the following nominal linear optimization problem (2.44)-(2.46) 

subject to data uncertainty 

 ( )Min f x cx  (2.44) 

s.t. ( )g x Ax b   (2.45) 

 l x u   (2.46) 

The uncertainty may reside in a particular row ݅ of the matrix ܣ, or in the objective 

function ܿ or the right hand side ܾ. Different from the modeling of uncertainty in stochastic 

programming, the uncertainty model in robust optimization is usually depicted as an 

uncertainty range. The scaled deviation ij is defined as the relative value of the forecast 
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error and the realization of the uncertainty. Furthermore, with the introduction of a budget 

of uncertainty Γ௜ with values in the interval ሾ0, ௜|ሿ, the ijܬ| is constrained as: 

 
i

ij i
j J




   (2.47) 

2.2.2 Static robust model 

Static robust optimization formulation looks for optimal solutions that optimize the 

objective function and meet the problem requirements for all possible revealing of the 

uncertainty in constraint coefficients. Hence, the variables are independent of the uncertain 

parameters. For a worst case analysis when taking into account the uncertainty, we consider 

the following problem (2.48)-(2.50): 

 Min cx  (2.48) 

s.t.  
1

ˆ
i

n

ij j ij ij j j
j j J

a x Max a x b
 

    (2.49) 

 l x u   (2.50) 

For the i th constraint, the auxiliary problem (2.51)-(2.53) is shown as following: 

 ˆ
i

ij ij j
j J

Max a x

  (2.51) 

s.t. 
i

ij i
j J




   (2.52) 

 0 1ij   (2.53) 

Accordingly, the dual of problem (2.51)-(2.53) is shown as problem (2.54)-(2.57). 
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i

i i ij
j J

Min z p


    (2.54) 

s.t. ˆ , ,i ij ij j iz p a y i j J     (2.55) 

 j jx y  (2.56) 

 ,  , 0i ij jz p y   (2.57) 

Where ݖ௜, ݌௜௝ are the dual decision variables for constraints (2.52)-(2.53) of the 

auxiliary problem . 

Incorporating model (2.54)-(2.57) into the original problem (2.48)-(2.50), the 

robust linear counterpart is formulated as: 

 Min cx  (2.58) 

s.t. 
1 i

n

ij j i i ij i
j j J

a x z p b
 

      (2.59) 

 j j jl x u   (2.60) 

 ˆ , ,i ij ij j iz p a y i j J     (2.61) 

 j j jy x y    (2.62) 

 ,  , 0i ij jz p y   (2.63) 

2.2.3 Two-stage robust optimization 

It is proved that the two-stage robust optimization with constraint-wise 

uncertainty is equivalent to the static robust optimization [65]. In particular, the 

assumption of constraint-wise uncertainty means that the uncertainty in a specific 
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constraint does not exist in the other constraints [66]. The proof is shown in detail as 

following. 

With the uncertainty ܾ bore in the right-hand side of the equality constraint, a 

two-stage robust optimization problem can generally be formulated as follows: 

 
21

1 2( )T T

b xx

Min c x MaxMin d x  (2.64) 

s.t.  1 2Ax Bx b  , 
1 2, 0x x   (2.65) 

Where uncertainty ܾ is modeled as  

  ˆ , 1,i i i i i ij ij ij
b b b b b z z z       (2.66) 

In order to solve the above two-stage robust optimization problem with Benders’ 

Decomposition algorithm [67]-[68], the following second-stage problem is usually 

generated: 

 
2

2T

b x
Max Min d x  (2.67) 

s.t.  2 1Bx b Ax  ,
1 2, 0x x   (2.68) 

The first-stage and second-stage variables interact with each other through the 

dual problem of the second-stage problem as below, where the first-stage variables are 

passed through the main problem. 

 1 1 1

,
( ) ( ) ( )T T T

b p b p p b
Max Max b Ax p Max b Ax p Max Max b Ax p      (2.69) 

s.t.  
T TB p d  (2.70) 
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Where ݌ is the dual variable introduced for the equality constraint with 

uncertainty ܾ. 

Therefore, the optimal solutions for ݔଵ,  ଶ correspond to the maximum value ofݔ

the interval for the uncertainty ܾ. And in the two-stage model, the optimal solution for ݔଵ 

is feasible for every possible realization of the uncertainty ܾ. 

While the static robust optimization is proposed so that a set of robust solutions 

can be provided against the realization of the uncertainty, which is shown below. 

 
1 2

1 2( )T T

x x
Min c x Min d x  (2.71) 

s.t.  1 2

b
Ax Bx Max b  ,

1 2, 0x x   (2.72) 

Similarly, the original second-stage problem of the static robust model is 

 
2

2T

x
Min d x  (2.73) 

s.t.  2 1

b
Bx Max b Ax  ,

1 2, 0x x   (2.74) 

Therefore, we can obtain the corresponding dual problem for (2.73)-(2.74): 

 1( )T

p b
Max Max b Ax p  (2.75) 

s.t.  
T TB p d  (2.76) 

It can be seen that (2.69)-(2.70) is equivalent to (2.75)-(2.76).  

Since the solution for ݔଶ is the same in both the static and the adaptive robust 

model, the solution for ݔଵ in the static robust model is also feasible for every realization 



www.manaraa.com

 

30 

of the uncertainty ܾ, which means ݔଶ in the static robust optimization is adjustable 

according to the uncertainty. Under such situation, the static robust optimization is 

equivalent to the adaptive robust optimization. 

2.3 Conclusions 

This chapter summarizes two different optimization models under uncertainty, 

including stochastic programming and robust optimization. The process for the 

generation of multi-stage scenario tree is described in detail. It is also addressed how to 

build the uncertainty models for both the SP and RO models respectively. Moreover, it is 

proved that static robust optimization is equivalent to the two-stage robust optimization 

with constraint-wise uncertainty 
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CHAPTER III 

DETERMINISTIC OPTIMAL OPERATION OF ENERGY-EFFICIENT BUILDINGS  

This chapter presents the components of the building energy systems, including 

electric grid integration, rooftop solar PV system, energy storage, as well as building 

appliances. Based on the description of the various components, the mathematical 

modeling of building system components is introduced. Furthermore, the building 

optimization problem is modeled as to minimize the daily operation cost for energy 

exchange and purchase. Case studies are conducted to show the effectiveness of the 

integration of combined heat and power system in reducing the energy dependence on 

electric grid while increasing the energy efficiency for the building energy systems. 

3.1 Components of building energy systems 

Running infrastructure of buildings more efficiently would lead to minimal capital 

investment and results in little or no disruption for occupants. From the economic 

perspective, this should make it the preferred starting point for increased energy 

efficiency in a real building system [69]. 

In general, a building energy system is integrated with a mix of energy resources 

as well as energy storage units and a variety of energy consumption devices, which is 

shown in Figure 3.1. The detailed description for each component will be discussed in the 

following sections. 
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Figure 3.1 Typical components of a building energy system 

 

3.1.1 Electric grid 

The grid acts as a battery in the grid-integrated building energy system [70]. The 

whole energy efficiency of a hybrid building energy supply system is usually higher than 

that of an independent system, as the storage capacity of the grid is supposed to be 

unlimited. The electricity generated by distributed generators can always be sold to the 

grid, and the additional produced electricity will not be wasted. 

3.1.2 Combined heat and power system 

The integration of CHP system is driven by the problems in electricity generation 

and distribution with respect to the availability and cost of electricity as well as by the 

inefficiencies in the traditional generation systems. These factors led to the great interest 

in onsite generation and simultaneous generation of heat and electricity. 
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In Figure 3.2, a typical CHP system produces electricity onsite while recovering 

the waste heat from power generation for heating or cooling purpose in a close building. 

The integration of CHP system benefits the consumers at the demand side to a great 

extent. It reduces the dependence of building energy systems on the electric power grid, 

which is especially in times of natural disasters or grid black outs. Meanwhile, CHP 

systems are capable of powering electric facilities during a disaster. Moreover, it meets 

both the electricity demand and the cooling and heating requirement for the building.  

 

Figure 3.2 Typical CHP system [71] 

 

3.1.3 Solar PV 

Despite of the technical problems for both the utility and the PV system [72], the 

ratio of grid-connected building systems with solar PV is increasing greatly [73]-[74]. 
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There are several reasons for this [75]: 1) Grid-connected BIPV delivers electricity at 

cheaper cost than the power grid to end users because power can be generated at the point 

of consumption without transmission or distribution; 2) The building owners can benefit 

a lot from selling surplus solar electricity back to the utility grid. 3) It is rare that PV 

panels fail or malfunction. Therefore, utilities have generated great interest in investing in 

PV. 

3.1.4 Battery units 

The building is supposed to be supplied with certain amounts of energy at certain 

times. With the battery storage device, it is more likely and economic to meet the load 

demands in different time periods. The availability of the battery depends on the amount 

of electricity charged and discharged in the different time periods, and it is influenced by 

the building demand and solar output. Battery technology is paired with the photovoltaic 

technologies to supply maximum flexibility to control diverse systems. Because solar 

power generation is occasional during a day, a season or a year, the battery system is a 

good choice to postpone the use of renewable energy at home. A battery backup system 

can help provide power to the system's owners during an outage or at evening.  

The role of battery technologies is different depending on the amount of storage 

deployed in short and long terms. For flywheel and super-capacitor type of batteries, the 

frequency and stability control is provided in the short term. For electrical batteries, 

hydrogen-chemical batteries, and pumped storage with water or air, they are acting as 

peak load shifting or shaping in the long term. 
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3.1.5 Building appliances 

As reported by the United States Department of Energy (DOE), the buildings 

consume up to 40.7% of the nation’s primary energy in 2013, among them residential 

buildings take around 22% and commercial ones for 18.7% [76]. Buildings in Hong 

Kong contributed about 40% toward the total energy consumption [77]. In addition, 

buildings are contributing mostly to global carbon emissions, which have a surprisingly 

profound influence on the natural environment around our corporation or industry, health, 

economy, and productivity [78].  

The types of residential and commercial end uses are examined in Figure 3.3. It 

can be observed that the major energy consumption is from lighting, refrigerator and 

HVAC. 

 

Figure 3.3 Overall electricity consumption by end use [10] 

 

Based on the demand requirements of the customer, each appliance can be set as 

either controllable or non-controllable. For controllable loads at the consumer side, 
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building appliances could be delayed or interrupted if necessary by the end user through a 

control system located at home or on internet [79]. In contrast, the operation of non-

controllable appliances need to start working immediately without the interference of the 

end user. The control strategies reflect the needs for the end users by minimizing energy 

costs over time instead of the regulatory and reserving benefits for the utility provider at 

the supply side. These strategies are achievable through local area networks (LAN) or 

home area network (HAN) network devices. 

3.2 Modeling of building energy system 

A typical energy-efficient building system is shown in Figure 3.4, where various 

energy sources including the electric grid, solar panel, battery, and CHP with boiler unit 

are utilized to supply both electric and thermal loads in the building. The building loads 

are classified into two main categories: non-controllable and controllable electric and 

thermal loads. 

 

Figure 3.4 Building integrated with various energy sources and loads 
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3.2.1 Integration with the grid 

In order to properly operate the building energy system under the integration of 

utility distribution system, the operating constraints include the grid interface capacity 

limits for the electric power (3.1)-(3.3). The scheduling variables for the power grid in 

each time period are the amount of grid electricity supplied to the building ( ௚ܲ௙), and the 

building electricity injected to the grid ( ௚ܲ௧) in each period, and the corresponding status 

of electricity flowing to the building (ݔ௚௙) and/or to the electric grid (ݔ௚௧). Constraint 

(3.3) determines the energy flow direction of the electric grid. 

 , ,0 gf t gf gf tP M x  
 (3.1)

 

 , ,0 gt t gt gt tP M x    (3.2) 

 , , 1gf t gt tx x   (3.3) 

where ௚ܲ௙,௧, ௚ܲ௧,௧ are the electric power supplied from or fed into the electric grid (kW), 

respectively. ܯ௚௙ and ܯ௚௧ are assumed to be the upper limits for the electricity 

exchanged between the building and the grid; the binary variable ݔ௚௙,௧ ൌ 1 indicates that 

the grid power is supplying electric loads for the building; otherwise, ݔ௚௙,௧ ൌ 0; the 

binary variable ݔ௚௧,௧ ൌ 1 indicates that the excess power is fed into the electric grid, 

otherwise, ݔ௚௧,௧ ൌ 0. 
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3.2.2 Combined heat and power system 

For the CHP with boiler unit, the control variables are their operating status (ݔ௖௛௣) 

as well as the power and thermal output (ܨ௖௛௣, ௖ܲ௛௣). Power and thermal generation limits 

are shown in (3.4)-(3.6) for the CHP unit, and in (3.7)-(3.8) for the boiler. In (3.4), when 

CHP is in operation, it consumes the natural gas with the amount of at least ܾ even 

without any power generation; when CHP generates power with natural gas, the 

additional operation cost will be proportional to the power it produces with the 

coefficient ܽ. Equation (3.5) describes the relationship between the thermal and electric 

power output from the CHP. Moreover, equation (3.6) limits its electric power output. 

 , , ,chp t chp t chp tF a p b x     (3.4) 

 , , ,( )chp t hre chp t chp tH F P   (3.5) 

 min max
, , ,chp chp t chp t chp chp tP x P P x     (3.6) 

where ܨ௖௛௣,௧ is the fuel power consumed by the CHP (kW); ݌௖௛௣
௧  is the power production 

from the CHP; ܪ௖௛௣,௧ is the thermal output supplied by the CHP unit; ݌௖௛௣
௠௔௫, ௖௛௣݌

௠௜௡ are the 

electric power capacity limits of the CHP; ݔ௖௛௣,௧ is the operating status of the CHP; ߟ௛௥௘ 

is the heat recovery efficiency of the CHP. 

The boiler can supply the thermal loads of the building as in (3.7). The thermal 

supply from the boiler is bounded by constraint (3.8). 

 , ,boi t boi boi tH F   (3.7) 

 min max
, , ,boi boi t boi t boi boi tH x H H x     (3.8) 
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where	ܨ௕௢௜,௧ is the fuel power consumed by the boiler unit (kW); ܪ௕௢௜,௧ is the thermal 

output supplied by the boiler unit; ܪ௕௢௜
௠௔௫, ௕௢௜ܪ

௠௜௡ are the thermal capacity limits of the 

boiler; ݔ௕௢௜,௧ is the operating status of the boiler; ߟ௕௢௜ is the efficiency of the boiler. 

According to (3.4)-(3.8), when the marginal fuel consumption parameterܽ in (3.4)

for electricity production is set to a certain value, the minimum fuel consumption 

parameter ܾ should meet the requirement (3.9). 

 
min min min( 1)nc hc hre chp boi hreb H a P H        (3.9) 

3.2.3 Battery energy storage 

The decision variables for the battery are status of charge/discharge (ݔ௕௖,  ,(௕ௗݔ

and its charging/discharging rates ( ௕ܲ௖, ௕ܲௗ). The dynamics of the charging level of the 

battery is modeled by (3.10), which creates a link between the charging rate of the battery 

in a given time period ݐand the successive state at ݐ ൅ 1. Because of the energy loss in the 

storage device [80], the energy efficiency of the battery is considered in the storage 

transition constraint (3.10). Meanwhile, the limits of the state of charge (SOC) are 

bounded in (3.11). By defining as a boundary value problem [81], both the initial and the 

final SOC of the battery are specified as the same predefined value in (3.12), so that the 

battery can meet the requirement during the next day. 

 
max

, 1 , , 1 , 1( )bat t bat t bc bc t bd t bd d bats s P P T c         (3.10) 

 min max
,bat bat t bats s s   (3.11) 

 0 ˆT
bat bat batS S S   (3.12) 
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min min max
bat bat bats c c  (3.13) 

Where ݌௕௖
௧ , ௕ௗ݌

௧  are the charging and discharging power of battery; ݏ௕௔௧
௠௔௫, ௕௔௧ݏ

௠௜௡ are the 

bounds of SOC; ܿ௕௔௧
௠௔௫, ܿ௕௔௧

௠௜௡are the capacity limits. 

The upper and lower limits for the charging level are imposed by (3.14)-(3.15) to 

keep sufficient amount of energy in the battery to feed the building during emergency 

circumstances. The energy flow direction of the battery is defined by (3.16). 

 min max
, , ,bd bd t bd t bd bd tP x P P x     (3.14) 

 min max
, , ,bc bc t bc t bc bc tP x P P x     (3.15) 

 , ,0 1bd t bc tx x    (3.16) 

where ݌௕௖
௠௔௫, ௕௖݌

௠௜௡, ௕ௗ݌
௠௔௫, ௕ௗ݌

௠௜௡are the upper and lower limits of charging/ discharging 

power of the battery; ݔ௕௖,௧,  ,௕ௗ,௧ indicate the charging and discharging statusݔ

respectively. 

3.2.4 Building appliances 

Response characteristics of smart loads will be modeled as controllable and non-

controllable types. In addition, operating characteristics of controllable loads including 

energy consumption pattern and preferences will be incorporated into the proposed model. 

For controllable electric and thermal loads, the major constraints include that 1) the loads 

must run for ைܶே hours for each scenario during the whole time horizon in (3.17); 2)the 

total energy consumption requirement in (3.18); 3) the required ON/OFF state at specific 

time periods in (3.19). 
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1

, , , 1( ), 1: ( 1)
ONk T

cntr t ON cntr k cntr k ON
t k

x T x x k T T
 




       (3.17) 

 min max
, _ , , ,

1

T

cntr t eh cntr t cntr t cntr t
t

E P x E


    (3.18) 

 
,, cntr tcntr tx x  (3.19) 

3.3 Deterministic formulation 

Opposite of global optimization which optimizes home energy use with regard to 

constraints from the grid or micro-grid system within which the home is integrated [82]-

[83], local optimization considers the building as a fully self-contained system and takes 

into account local criteria only [84]. In our research, local optimization is taken into 

account to manage all energy consumption, generation and storage components at the 

building level. 

In general, the goal for the operation of the energy-efficient building is to 

minimize the total net cost for operating CHP with boiler and exchanging electricity 

between electric grid and the building over the entire time horizon while satisfying the 

operational requirements of the building energy system. As shown in Figure 3.5, the 

problem is going to find the optimal scheduling decisions for all electric power and 

thermal units in the system.  
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Figure 3.5 Building optimization problem 

 

In order to focus on the improvement of energy consumption efficiency of 

building energy systems, there are several assumptions made here: 1) Solar power 

production and energy consumption are considered as exactly known; 2) Interruptible and 

non-interruptible demands are all considered as controllable loads directly; 3) Thermal 

supply is supposed to just meet the thermal loads sufficiently, and no extra thermal power 

is wasted for the building system. 

The objective function (3.20) consists of the cost of grid electricity and energy 

supplied by the CHP with boiler unit, and the revenue obtained from selling energy to the 

electric grid for 24 hours. No costs are incurred by the operation of solar PV panels and 

battery storages. 
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 , , , , , , ,
1

[ ( )]
T

gf t gf t gt t gt t gas t chp t boi t d
t

Min c P c P c F F T


        (3.20) 

where the superscript t is time index; ௗܶ is the time interval (one hour here); ܿ௚௙,௧, ܿ௚௧,௧  
are 

the energy prices supplied from or fed into the electric grid ($/kWh); ܿ௚௔௦,௧  
is the natural 

gas price for the CHP and boiler unit ($/kWh). 

The price of purchasing energy from the grid at different hours is depicted in 

Figure 3.6. This time-of-use electricity prices are labeled with three levels, including off-

peak price (5.1 cent/ kWh), mid-peak price (7.1 cent/ kWh), and on-peak price (11.9 cent/ 

kWh). As described in chapter 1, this kind of rate structure is not flexible enough since it 

is fixed far in advance. The price for building electricity injected into the grid is 6.7 cent/ 

kWh. And the price of natural gas is assumed to be 3.1 cent/ kWh.  

 

Figure 3.6 Energy prices 
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thermal loads. In the deterministic model, the electric loads are fed by power from the 

grid, battery, solar PV, and CHP in (3.21). 

 , , , , , , , , _ ,gf t gt t chp t bc t bd t sol t nc t cntr t e cntr tP P P P P P P P x         (3.21) 

Where ݌௦௢௟
௧  is the solar power production; ௡ܲ௖,௧, ௖ܲ௡௧௥,௧ is the must-on and controllable 

electric loads, respectively; ݔ௘_௖௡௧௥,௧ is the status of controllable electric loads. 

The CHP and boiler unit should satisfy the demand of controllable and non-

controllable thermal loads as in (3.22). 

 , , , ,( )hc chp t boi t nc t loss tH H H H     (3.22) 

Where ܪ௡௖,௧,  ௛௖is theߟ ;௖௡௧௥,௧is the must-on and controllable thermal loads, respectivelyܪ

thermal coil efficiency; ݔ௛_௖௡௧௥,௧ is the status of controllable thermal loads. 

3.4 Case study 

As shown in Table 3.1, 5 cases are conducted for the deterministic analysis. From 

Cases 1 to 5, the solar power productions and non-controllable loads are considered to be 

deterministic parameters. The goal of these cases is to show the effect of solar power 

sources and loads on the total daily production cost of electricity and the amount of 

natural gas required for producing electric and thermal power. In Case 1, the grid is the 

sole power source to supply electric loads of the building. In Case 2, the solar power is 

added to the building as a free distribution generation source for electric loads. The 

battery is considered as an alternative power source in Case 3. From Cases 1 to 3, the 

controllable electric loads are fixed at hours 11-13 and 17; and there are no thermal loads. 
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Thermal loads and the boiler are considered in Case 4; and the CHP is taken into account 

to supply the loads in Case 5. 

Table 3.1 Cases with a variety of mix of energy sources 

Cases 1 2 3 4 5 

Power Generation 

Electric grid      

Solar ×     

Battery × ×    

CHP × × × ×  

Boiler × × ×   

Loads 

Non-controllable electric 
loads 

     

Controllable electric 
loads 

- - - … … 

Non-controllable 
thermal loads 

× × ×   

Controllable thermal 
loads 

× × × … … 

Note: ‘’means candidate; ‘×’means non-candidate; ‘-’means fixed status; ‘…’ means 
unfixed status 

The operating cost is shown in Table 3.2. Compared with Case 1, the operating 

cost is reduced by 20.9 % after integration of solar power to the building. The 

coordination of the battery can further reduce the cost to 96.56% of that in Case 2. Note 

that the thermal loads are not taken into account in Cases 1-3 but considered from Cases 

4-5. The operating cost of Case 5 with the CHP is 11.57% less than Case 4. 
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Table 3.2 Daily production cost for Cases 1-5 

Case 1 2 3 4 5 

Cost ($) 196.80 155.67 150.32 221.08 195.49 

 

3.4.1 Electric power supply 

The power exchanged between the grid and building over the time horizon is 

shown in Figure 3.7, where the negative value means that the building feeds the electric 

power back to the grid. There is no solar power generation at hours 1-6 and 19-24, 

therefore the power supplied by the grid has the same curve during these periods for 

Cases 1 and 2. In Case 3, the battery charges when the price of power provided by the 

grid is low (e.g. hours 1, 4-5, 7-8, 15, 17-18), and it discharges to supply the loads during 

the hours (e.g. hours 19-22) when the electricity price is high. In Case 5, in order to 

obtain the optimal operating point of the building, the building utilizes its own generating 

units in hours 1-3, 5, 22, and 24, and provides excessive power to the electric grid. 
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Figure 3.7 Power exchange between the grid and building 

 

3.4.2 Impact of controllable electric loads 

For Case 3 shown in Figure 3.8, the controllable electric loads are not shiftable and 

should be supplied in hours 11-13 and 17; but for Case 4 in Figure 3.9, the controllable 

loads are scheduled to optimally operate in hours 2-4 and 24. This flexibility of the 

scheduling of controllable electric loads improves the energy-efficiency performance for 

the building and reduces the operating cost for the electric loads from $150.32 in Case 3 to 

$143.83 in Case 4.  
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Figure 3.8 Scheduling of controllable electric loads (Case 3: fixed) 

 

 

Figure 3.9 Scheduling of controllable electric loads (Case 4: unfixed) 

 

Under the impact of controllable electric loads, the electric power from different 

power sources is compared in Case 3 (Figure 3.10) and Case 4 (Figure 3.11). 
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Figure 3.10 Power supply (Case 3: fixed) 

 

 

Figure 3.11 Power supply (Case 4: unfixed) 

 

In Case 5 (Figure 3.12), the controllable electric loads operate at hours 6-8 and 

23. In Figure 3.13, due to the lower energy price and high energy efficiency of the CHP, 

electric grid supplies to electric loads almost zero or negative power during hours 1-6 and 
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18-24 when thermal loads are higher than electric loads, and the CHP constantly 

produces maximum power of 55 kW. For hours 7-17, the CHP has lower power output to 

meet the decreasing demand of thermal loads. As a result, electric grid power increases to 

pick up the electric loads in the building.  

 

Figure 3.12 Scheduling of controllable electric loads (Case 5) 
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Figure 3.13 Electric power supply (Case 5) 

 

3.4.3 Impact of controllable thermal loads 

In Case 4, the controllable thermal loads are operated at hour 1-5. Figure 3.14 

depicts the power supplied by the boiler for both controllable and non-controllable thermal 

loads.  
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Figure 3.14 Scheduling of controllable thermal loads without CHP (Case 4) 

 

In Case 5, due to the higher thermal loads than electric loads for hours 1-6, 18-24 

as in Figure 2.1, it is noticed from Figure 3.15 that the CHP has higher power output than 

the boiler while contributing to the electric loads. It is also observed from Figure 3.16 

that the CHP supplies the total power required by controllable thermal loads during hours 

9-13. This is because of the cheaper cost of natural gas compared with the energy price 

from the electric grid as listed in Figure 3.6. 
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Figure 3.15 Thermal power supply from CHP and boiler (Case 5) 

 

 

Figure 3.16 Scheduling of controllable thermal loads with CHP (Case 5) 

 

3.5 Conclusion 

In sum, a CHP system's energy consumption model is developed to simulate the 

energy consumption pattern of CHP systems. The system component characteristics and 
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building energy demand are incorporated to optimize CHP systems' operation and 

performance. The optimization problem of building systems is introduced through the 

modeling of all components in energy-efficient building systems under the utility grid 

interconnection, including the power grid interface, CHP units, energy storage devices, 

and building appliances. The mixed energy sources are applied to collaboratively supply 

both electric and thermal loads. 

The results of these case studies show the economically scheduling operation of 

the grid, battery devices, CHP and boiler units can provide a set of optimal solutions for 

the grid-tied energy-efficient building in order to fulfill the energy demand requirement 

while keeping the operating cost minimum. 
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CHAPTER IV 

STOCHASTIC OPTIMAL OPERATION OF ENERGY-EFFICIENT BUILDINGS 

This chapter presents a multi-stage mixed integer stochastic programming model 

for the optimal operation of energy-efficient building systems considering controllable 

electric and thermal loads. In order to minimize energy usage expenses under uncertainty, 

the randomness with solar power production, non-controllable loads is incorporated in the 

optimization model with a multi-stage scenario tree, which represents hourly forecasts in 

the optimization period. The simulation results to the multi-stage stochastic programming 

problem offer a set of adaptive decision solutions within the scheduling horizon, which 

provides the optimal strategy of energy dispatch from various energy resources for each 

realization of the uncertainty. Hence, the operation of energy-efficient buildings will be 

more robust against changes in uncertain variables. 

4.1 Stochastic formulation 

An uncertain future requires that we consider multiple solutions to deliver cost-

effective and reliable energy. The stochastic modeling addresses the risk due to energy 

consumption and renewable energy production volatility. Moreover, the optimal 

operation of building energy systems involves the decision-making under uncertainty. In 

order to minimize the daily production cost of the building energy systems under 

uncertainty from the energy consumption and renewable energy generation, the multi-
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stage stochastic programming is a promising approach to mathematically represent the 

stochastic decision-making problem accounting for the impact of the uncertainty on 

power dispatch decisions of energy-efficient buildings. 

With the consideration of uncertainties ( ௦ܲ௢௟, ௡ܲ௖,  ௡௖), a multi-stage SP modelܪ

is designed where a set of decisions ( ௚ܲ௙, ௚ܲ௧, ,௖௛௣ܨ  ௕௢௜) are to be made sequentiallyܨ

using the partial revealed information. Assume that there are several scenarios to model 

the uncertain variables in the problem, and the probability of each scenario is ߩ௧௝ with 

∑ ௧௝ߩ
௃೟
௝ୀଵ ൌ 1 for ݐ ൌ 2,⋯ , ܶ. The objective function is shown as follows. 

 
,1 ,1 ,1 ,1 ,1 ,1 ,1

, , , , , , ,
2 1

( )

[ ( )]
t

gf gf gt gt gas chp boi

JT

tj gf t gf tj gt t gt tj gas t chp tj boi tj
t j

Min C P C P C F F

C P C P C F F
 

     

      
 (4.1) 

In the above model, the first-stage variables consist of the electric outputs 

( ௚ܲ௙, ௚ܲ௧, ௖ܲ௛௣, ௕ܲ௖, ௕ܲௗሻ	and thermal outputs ሺܨ௖௛௣,  ௕௢௜) decisions at hour 1, whichܨ

should be made irrelevant of the actual loads ሺ ௡ܲ௖,  ௡௖ሻ and the solar power generationܪ

ሺ ௦ܲ௢௟ሻ. In contrast, at the following stages	ݐ ൒ 2, the future operation status and energy 

outputs of the electric grid, battery, and CHP with boiler unit are taken as wait-and-see 

variables, which are dependent on the uncovering of the uncertainty. 

The basic system requirement is to continuously supply the non-controllable loads 

while optimally scheduling the controllable electric and thermal loads. Further operating 

constraints include the capacity limits for electricity from and to the electric grid, 

charging and discharging capacity of battery devices, power generation limits of CHP 

with boiler units. 
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 , , , , , , , , _ ,gf tj gt tj chp tj bd tj bc tj sol tj nc tj cntr t e cntr tjP P P P P P P P x         (4.2) 

 , , , , _ , ,( )hc chp tj boi tj nc tj cntr t h cntr tj exh tjH H H H x H       (4.3) 

 , ,0 gf tj gf gf tjP M x    (4.4) 

 , ,0 gt tj gt gt tjP M x    (4.5) 

 max
, 1, , , 1, , 1,( )bat t j bat tj bc bc t j bd t j bd d batS S P P T C         (4.6) 

 min max
,bat bat tj batS S S   (4.7) 

 0
, ,

ˆT
bat tj bat tj batS S S   (4.8) 

 min max
, , ,bd bd tj bd tj bd bd tjP x P P x     (4.9) 

 min max
, , ,bc bc tj bc tj bc bc tjP x P P x     (4.10) 

 , , ,chp tj chp tj chp tjF a P b x     (4.11) 

 , , ,( )chp tj hre chp tj chp tjH F P   (4.12) 

 min max
, , ,chp chp tj chp tj chp chp tjP x P P x     (4.13) 

 , ,boi tj boi boi tjH F   (4.14) 

 min max
, , ,boi boi tj boi tj boi boi tjH x H H x     (4.15) 

 , , 1gf tj gt tjx x   (4.16) 

 , ,0 1bc tj bd tjx x    (4.17) 

 , , , , , ,0 , , , , , 1bc tj bd tj gf tj gt tj chp tj boi tjx x x x x x 
 (4.18)

 

Where ௖ܲ௡௧௥,௧ includes both interruptible and non-interruptible electrical loads; ܪ௘௫௛,௧௝ 
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represents the exhausted heat from the building; ܪ௖௡௧௥,௧ includes both interruptible and 

non-interruptible thermal loads. The electric power and thermal balance constraints are 

represented in (4.2)-(4.3), respectively. The electric grid interface operation for selling 

and purchasing power are constrained by (4.4)-(4.5). The state of charge of the battery is 

determined through (4.6)-(4.8), and both charging and discharging rate limits of the 

battery are formulated in (4.9)-(4.10). Electrical and thermal operation limits of CHP 

with boiler are listed in (4.11)-(4.15). The constraints for binary status variables consist 

of (4.16)-(4.18). 

Finally, response characteristics of controllable loads will be modeled as 

interruptible and non-interruptible types. For interruptible electric loads, it includes 

PHEV; dishwasher, cloth dryer and washing machine belong to the type of non-

interruptible electric loads; electrical water heater is either non-interruptible or 

interruptible thermal loads [85]. 

For interruptible loads, the minimum continuous operation period is 1 hour. The 

constraints for interruptible loads are the minimum and maximum power consumption 

requirements, as shown in (4.19) for electric loads and in (4.20) for thermal loads. 

 min max
, _ ,

1

T

p cntr t e cntr tj p
t

E P x E


    (4.19) 

 min max
, _ ,

1

T

h cntr t h cntr tj h
t

E H x E


    (4.20) 

For non-interruptible electric and thermal loads, the minimum continuous 

operation requirements are formulated as in (4.21)-(4.22). Because of the non-



www.manaraa.com

 

59 

interruptible nature of the loads, the minimum and maximum energy consumptions are 

therefore the same. 

 
, 1

_ , , _ , _ , 1, ,( ), 1, , ( 1)
ele ONk T

e cntr tj ele ON e cntr kj e cntr k j ele ON
t k

x T x x k T T
 




        (4.21) 

 
, 1

_ , , _ , _ , 1, ,( ), 1, , ( 1)
heat ONk T

h cntr tj heat ON h cntr kj h cntr k j heat ON
t k

x T x x k T T
 




        (4.22) 

4.2 Multi-stage scenario tree generation and reduction 

Assume that these three uncertainties are in normal distribution and independent 

from each other. In the multivariate ARMA (1, 1) time series model, the auto-regressive 

parameter ߙ௜ is 0.95, and the moving average parameter ߚ௜ is 0.02. This approach means 

that forecast errors ݒ௧௝ in (4.23) are simulated for solar power generation and load 

demands through (2.30)-(2.32). The real solar power and energy consumption at time t is 

computed as the sum of the measured time series from the historic data and the forecast 

error from ARMA model as in (4.24). 

 , , ,( , , )T
tj sol tj nc tj nc tjv P P H     (4.23) 

 
, , ,

, , ,

, , ,

sol tj sol tj sol tj

nc tj nc tj nc tj

nc tj nc tj nc tj

P P P

P P P

H H H

     
            
         





 (4.24) 

Figure 4.1 shows the 100 scenarios for the uncertainty from non-controllable 

electric and thermal loads, as well as solar power generation within 24 hours. In the 

ARMA time series model, the standard deviations are 0.2 for non-controllable electric 

loads, 0.3 for non-controllable thermal loads, and 0.5 for solar power generation, 
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respectively. The generated scenarios will be used as the input of the scenario tree 

generation. 

 

Figure 4.1 Scenarios generated for the uncertainty (100 groups) 

 

A multi-stage scenario tree with hourly discretized data within one day is 

generated by conducting the scenario reduction algorithm, which is used as the input for 

the stochastic analysis. The scheduling horizon is hourly discretized into 3 stages, 

branching at hour 1 and 6. Through aggregating the 100 scenarios in Figure 4.1 into 9 

reduced ones, the multi-stage scenario tree is shown in Figure 4.2. At each node, there are 

three data standing for the uncertainty from electric and thermal loads as well as solar 

power generation. The first stage is hour 1, the second stage is within hour 2 to hour 6, 

and the third stage starts from hour 7 to 24. Besides, the reduced scenarios are shown in 

Figure 4.3. 
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Figure 4.2 Scenario tree with probability 

 

 

Figure 4.3 Reduced scenarios  

 

4.3 Case Studies 

The controllable loads are described in Table 4.1. For non- interruptible electric 

and thermal loads, their initial statuses are set to be OFF and OFF separately; the 

minimum ON hours are 4, 5 respectively; the power demands are 29 kW and 47 kW at 

the operating hour. The Maximum and minimum controllable energies are set to be the 

same, 116 kWh for non- interruptible electric loads, and 235 kWh for non- interruptible 

thermal loads. Hence, the total operating hours for non- interruptible loads are 4 hours for 
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electric loads and 5 hours for thermal loads. The following analysis for stochastic cases is 

based on the 4th scenario (S4) among 9 scenarios. 

Table 4.1 Controllable loads data 

Controllable loads 
Initial 
state 

Min. ON 
hours 

Power demand 
per hour (kW)

Energy demand 
range (kWh) 

Total 
operating 

hours 

Electric 
loads 

Interruptible OFF 1 18 [50, 56] 3 

Non- 
interruptible 

OFF 4 29 [116, 116] 4 

Thermal 

loads 

Interruptible OFF 1 30 [80, 100] 3 

Non- 
interruptible 

OFF 5 47 [235, 235] 5 

 

4.3.1 Impact of CHP on energy supply 

We are going to discuss the operation decision under the impact of the commitment 

of CHP. In this case, only non-controllable loads are considered. Compared to the daily 

cost of $211.1 without the operation of CHP, it would be decreased to $173.8 when CHP 

is involved in the building system. 

4.3.1.1 Power supply 

Without CHP as shown in Figure 4.4, most of the power will be supplied from 

electric grid. Battery takes the role of storage, it charges when there is extra power from 
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electric grid and solar panel; and discharges when the power is not enough. Solar power 

has a big contribution during noon time. 

 

Figure 4.4 Power supply without CHP (S4) 

 

For hours 1-6, 21-24 in Figure 4.5, the electric loads are totally supplied by CHP. 

During this period, the extra power will be fed back to the electric grid except hour 5. 

During hours 7-19, there is no power fed back to the electric grid, it is supplying power to 

the building. It is noted that the CHP unit, battery and solar panel are collaboratively 

supplying power for the building and the grid at hour 20. Battery charges at hours 7-8, 

17-18 while the solar power is contributing to energy production; also charges at hour 5 

with the extra power from CHP. It discharges at hour 10-11 and 13-14 with high electric 

demands, and hour 19-20 with low solar power production. 
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Figure 4.5 Power supply with CHP (S4) 

 

4.3.1.2 Thermal supply 

When the CHP is not committed, the boiler will take over the responsibility for 

providing the total thermal loads. However, when CHP is involved in the building system 

as shown in Figure 4.6, then the CHP system is supplying much more power for the thermal 

loads than the boiler unit does. The thermal supply from the CHP is constantly 74 kW when 

the electricity price from the electric grid is relatively high during hours 1-6, 9-14 &18-24. 

However, it decreases during hours 7-8 &15-17 as the thermal demands are decreasing. In 

addition, there will be extra thermal supply from the CHP during hours 9-14 with low 

thermal demands, which decreases the daily operation cost by 17.6%. 
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Figure 4.6 Thermal supply with CHP (S4) 

 

4.3.2 Impact of battery on energy supply 

This case is designed in order to investigate the impact of battery on the operation 

of CHP and grid, where controllable loads are not considered either. Figure 4.7 shows the 

power supply from various energy sources except the battery. When the battery is 

considered in power supply (Figure 4.8), the operation of the grid is changed while the 

CHP unit doesn't because its thermal output is determined by the thermal demand. The 

change of power output from the grid is due to the charging and discharging effect of the 

battery. The operation of battery can decrease the daily cost from $176.5 to $173.8. 
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Figure 4.7 Power supply without battery (S4) 

 

 

Figure 4.8 Power supply with battery (S4) 
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4.3.3 Impact of controllable loads on energy supply 

4.3.3.1 Controllable electric loads 

From Figure 4.9, interruptible electric loads are operated at hours 1, 7, 8; non-

interruptible electric loads are in operation from hour 1-4 due to the low energy price. 

Figure 4.10 shows the power supply with the consideration of controllable electric loads, 

which increases the daily operation cost from $173.8 to $183.6 compared with the case 

when no controllable electric loads are considered. 

 

Figure 4.9 Power demand considering controllable electric loads (S4) 
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Figure 4.10 Power supply considering controllable electric loads (S4) 

 

The impact of the controllable electric loads on the power supply from the electric 

grid and the battery is compared respectively. The power output from the CHP has no 

change and is the same as shown in Figure 4.8. In Figure 4.11, there is energy exchanged 

from the building to the grid during hours 1-4 when no controllable electric loads are 

taken into account. In Figure 4.12, the operation of non-interruptible electric loads at hour 

1-4 and the interruptible electric loads at hour 1 leads to the increased output from the 

electric grid and that the status of the battery changes from no power output to charging. 

No energy exchanges between the grid and the battery. It is observed that grid power 

increases during hour 7-8 in order to run the interruptible electric loads, but the battery 

has the same power output.  
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Figure 4.11 Impact of controllable electric loads on grid power supply (S4) 

 

 

Figure 4.12 Impact of controllable electric loads on battery power supply (S4) 

 

4.3.3.2 Controllable thermal loads 

For interruptible thermal loads in Figure 4.13, they are operated at hours 1, 11, 13; 

while for non-interruptible thermal loads, they run from hours 1-5 when their initial status 
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is ON. Therefore, the daily operation cost will be increased from $173.8 to $179.3. From 

hours 7-17 in Figure 4.14, the CHP is contributing due to the interruptible thermal loads 

and the high energy price from the electric grid. 

 

Figure 4.13 Thermal demand considering controllable thermal loads (S4) 

 

 

Figure 4.14 Thermal supply considering controllable thermal loads (S4) 
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The thermal output from the CHP unit will be slightly impacted by the operation 

of controllable thermal loads. With the consideration of controllable thermal loads, the 

thermal output from the CHP will be decreased from 74.1 kW to 70.8 kW (Figure 4.15) 

when the controllable thermal loads are running, including both interruptible loads at 

hour 1 and non-interruptible loads at hour 1-5 (Figure 4.13); while the boiler increases its 

thermal output in order to sufficiently supply thermal power to run the controllable 

thermal loads normally (Figure 4.16). At hour 6 without controllable thermal loads, the 

increased thermal power from the boiler supplements the reduced amount from the CHP. 

Even though the CHP lowers its thermal output during hour 9-14, the interruptible 

thermal loads at hour 11 and 13 are fulfilled by the CHP when the boiler has no any 

output. This can be explained by the fact that when no controllable loads are considered 

the extra thermal supply from the CHP is more than the amount the interruptible thermal 

loads require. 
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Figure 4.15 Impact of controllable thermal loads on CHP thermal supply (S4) 

 

 

Figure 4.16 Impact of controllable thermal loads on boiler thermal supply (S4) 

 

4.4 Rolling stochastic optimal operation of building energy system 

In practice, the scenarios in stochastic programming would deviate from the 

realized outcome of the uncertainty. In order to utilize the updated information of the 
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uncertainty, the rolling stochastic strategy is proposed where hourly adjusted scenarios 

are considered. The stochastic optimization problem is solved for each hour to find the 

optimal solutions at the present and the future hours. The power dispatch decisions are 

supposed to be known for the past hours. However, only the current decisions would be 

taken into consideration. The benefit of considering the remaining hours is adaptability. 

Through this way the model would be less likely to jump into any possibly infeasible or 

hard-to-implement solution. 

The decision structure is described in the left of Figure 4.17 which shows the 

scenario tree for several scheduling periods. The right of Figure 4.17 shows the flow 

chart for rolling scheduling purpose, where the multi-stage stochastic programming will 

be iterated until the max rolling horizon is met. 

 

Figure 4.17 Diagram of rolling scheduling, left: decision structure, right: flow chart 
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Table 4.2 lists the loads data. For controllable electric and thermal loads, their 

initial statuses are set to be OFF and ON separately; the minimum ON hours are 3, 4 

respectively; the power demands are 29 kW and 22.5 kW at the operating hour. The 

Maximum and minimum controllable energies are set to be the same, 116 kWh for 

electric loads, and 112.5 kWh for thermal loads. Hence, the total operating hours under 

different cases are the same, 4 hours for electric loads and 5 hours for thermal loads.  

Table 4.2 Loads data 

Loads 
Initial 
state 

Min. 
ON 

hours 

Power 
demand per 
hour (kW) 

Energy demand 
range (kWh) 

Total 
operating 

hours 

Electric 
loads 

Controllable OFF 3 29 [116, 116]  4 

Non-
controllable 

-- 1 -- -- 24 

Thermal 

loads 

Controllable OFF 4 22.5 [112.5,112.5] 5 

Non-
controllable 

-- 1 -- -- 24 

 

In order to analyze the effectiveness of the proposed algorithm, case studies are 

implemented to analyze the impact of uncertainties on the optimal operation of the 

energy-efficient buildings. It studies the stochastic behavior of the solar power source and 

loads with their hourly updated information. 

During the test in rolling scheduling analysis, different scenarios for each 

uncertainty are generated at each hour. Figure 4.18 shows the difference of information 

between the updated and forecasted data during the 24 hours rolling period. 
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Figure 4.18 Relative errors of the uncertainty (rolling scheduling) 

 

The operating cost of rolling stochastic method is $216.54, which is higher than 

the deterministic case. The case study shows that the random characteristics of these three 

uncertain variables increase the total operating cost by 10.76% compared with the 

deterministic case. The simulation results are shown in Figure 4.19-Figure 4.24. In Figure 

4.19-Figure 4.20, due to the lower energy price and high energy efficiency of the CHP, 

electric grid supplies to electric loads almost zero or negative power during hours 1-6 and 

18-24 when thermal loads are higher than electric loads, and CHP constantly produces 

maximum power of 55 kW. For hours 7-17, CHP has lower power output to meet the 

decreased demand of thermal loads. As a result, electric grid power increases to pick up 

the electric loads in the building. In the deterministic case, the controllable electric loads 

operate at hours 6-8 and 23. Due to the impact of uncertainties in the rolling stochastic 

case, the controllable electric loads are shifted to operate at hours 9-11 and 15. 

0 2 4 6 8 10 12 14 16 18 20 22 24
-2

0

2

4

hour

re
la

tiv
e 

er
ro

r(
%

)

 

electric load

solar pow er

thermal load



www.manaraa.com

 

76 

 

Figure 4.19 Electric power supply (deterministic) 

 

 

Figure 4.20 Electric power supply (stochastic) 

 

Figure 4.21-Figure 4.24 illustrate the impact of uncertainties on the controllable 

thermal loads and thermal power supplied by the CHP with boiler unit. In deterministic 

case without uncertainty, due to the higher thermal loads than electric loads for hours 1-6, 
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18-24 as shown in Error! Reference source not found., the CHP has higher power 

output than the boiler while contributing to the electric loads. During hours 9-13 with the 

cheaper cost of natural gas compared with the energy price from the electric grid as listed 

in Figure 3.6, the CHP supplies the total power required by controllable thermal loads. In 

the rolling stochastic case, the controllable thermal loads are shifted to operate in hours 1-

4 and 24, and they are supplied by both CHP and boiler.  

 

Figure 4.21 Thermal power supply (deterministic) 

 

 

Figure 4.22 Thermal power demand (deterministic) 
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Figure 4.23 Thermal power supply (stochastic) 

 

 

Figure 4.24 Thermal power demand (stochastic) 

 

4.5 Conclusion 

This chapter analyzes the optimal operation of energy-efficient building systems 

from the stochastic viewpoint. For the stochastic study, the impact of uncertainty on the 

operation for the building is taken into account. The multi-stage mixed-integer stochastic 

programming model is built for the optimal operation of energy-efficient building 

systems taking into account the random characteristics of non-controllable electric and 
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effective in reducing the operating cost, and its operation is mainly determined by the 

thermal demands. The consideration of interruptible and non-interruptible loads can 

greatly impact the optimal decisions for the energy management of the grid, battery, and 

the CHP with boiler unit as well. 
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CHAPTER V 

ROBUST OPTIMAL OPERATION OF ENERGY-EFFICIENT BUILDINGS 

This chapter proposes a robust optimization method for the optimal operation of 

energy-efficient building systems. Both of the CHP unit and battery are applied in the 

building energy system to overcome the drawbacks introduced by uncertainties. The 

effectiveness of the CHP and battery unit is investigated in alleviating the influence of 

intermittent solar power generation and variable customer loads. The proposed robust 

model is solved using mixed integer linear programming, and the model’s robustness is 

adjusted against the level of conservatism of the solution.  

5.1 Robust formulation 

Assume that all the decision variables should be made before the revealing of the 

uncertainty from solar power generation, non-controllable electric and thermal loads. In 

both electric balance (3.21) and thermal balance (3.22), uncertainties ݌௦௢௟௔௥
௧ , ௟௢௔ௗ݌

௧ , ௟௢௔ௗܪ
௧  

are modeled as asymmetric and bounded variables ݌෤௦௢௟௔௥
௧ , ෤௟௢௔ௗ݌

௧ , ෩௟௢௔ௗܪ
௧ . None of 

controllable loads are considered in the robust optimal operation of the building energy 

systems. The uncertainty takes values in 

 ˆ ˆ,t t t lt t ut
solar solar solar solar solar solarp p p p p p     (5.1) 

 ˆ ˆ,t t t lt t ut
load load load load load loadp p p p p p     (5.2) 
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 ˆ ˆ,t t t lt t ut
load load load load load loadH H H H H H     (5.3) 

In the robust model, the objective function (5.4) is the same as (3.20) in the 

deterministic model. The electric power and thermal balances in the building should be met 

when the worst case of uncertainties occurs. For the electric loads balance in (5.5), the 

worst case would occur at the maximum increase in the electric loads and the maximum 

decrease in solar power generation. For the thermal loads balance in (5.6), the worst case 

would occur when the thermal loads reach the possible maximum value. 

 
1

[ ( )]
T

t t t t t t t
GF GF GT GT gas CHP boiler d

t

Min c p c p c F F T


        (5.4) 

s.t.  ˆ ˆ ˆ ˆ

t t t t t t t
GF GT CHP BC BD solar load

ut ut lt lt ut ut lt lt
load p load p solar solar solar solar

p p p p p p p

Max p p p p   

     

   
 (5.5) 

 1
ut lt ut lt t
p p solar solar        (5.6) 

 0 , , , 1ut lt ut lt
p p solar solar      (5.7) 

  ˆ ˆ( )t t t t ut ut lt lt
hc CHP boiler load exhausted load H load HH H H H Max H H        (5.8) 

 2
ut lt t
H H    (5.9) 

 0 , 1ut lt
H H    (5.10) 

and constraints (3.1)-(3.19). 

Where ߟ௣௨௧, ,௣௟௧ߟ ௦௢௟௔௥ߟ
௨௧ , ௦௢௟௔௥ߟ

௟௧  are the scaled deviations for the random electric loads and 

solar power generation. Similarly, ߟு
௨௧, ுߟ

௟௧ are the scaled deviations for the random thermal 

loads;	Γଵ
௧, Γଶ

௧  are both the robust measurements for the adjustment of the robustness of the 

problem against the level of conservatism of the solution. Γଵ
௧ is used to adjust the range of 
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uncertainty set for electric loads and solar power generation at time t; Γଶ
௧  is used for 

uncertain thermal loads at time t.  

In order to make the above problem tractable, the following two sub-problems 

(5.11)-(5.13) and (5.14)-(5.16) need to be converted into the corresponding dual problems 

(5.17)-(5.20) and (5.21)-(5.23) by introducing dual variables ߣଵ
௧ , ଵଵߨ

௧ା, ଵଵߨ
௧ି, ଵଶߨ

௧ା, ଵଶߨ
௧ି  for 

constraints (5.12)-(5.13), and dual variables ߣଶ
௧ , ଶଵߨ

௧ା, ଶଵߨ
௧ି  for constraints (5.15)-(5.16), 

respectively. 

Problem  

 ˆ ˆ ˆ ˆut ut lt lt ut ut lt lt
load p load p solar solar solar solarMax p p p p       (5.11) 

s.t. 1
ut lt ut lt t
p p solar solar        (5.12) 

 0 , , , 1ut lt ut lt
p p solar solar      (5.13) 

Problem  

 ˆ ˆut ut lt lt
load H load HMax H H   (5.14) 

s.t. 2
ut lt t
H H    (5.15) 

 0 , 1ut lt
H H    (5.16) 

Problem  

 1 1 11 11 12 12
t t t t t tMin             (5.17) 

s.t.  1 11 1 11ˆ ˆ,t t ut t t lt
load loadp p          (5.18) 

 1 12 1 12ˆ ˆ,t t ut t t lt
solar solarp p          (5.19) 
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 1
t , 11

t 
, 12

t 
0  (5.20) 

Problem  

 2 2 21 21
t t t tMin        (5.21) 

s.t. 2 21 2 21
ˆ ˆ,t t ut t t lt

load loadH H         (5.22) 

 2
t  , 21 0t    (5.23) 

Finally, a tractable robust model can be formulated as follows, 

 
1

[ ( )]
T

t t t t t t t
GF GF GT GT gas CHP boiler d

t

Min c p c p c F F T


        (5.24) 

s.t. 1 1 11 11 12 12
t t t t t t t t t t t t t
GF GT CHP BC BD load solarp p p p p p p                     (5.25) 

 2 2 21( )t t t t t t t
hc CHP boiler load exhaustedH H H H          (5.26) 

And constraints (3.1)-(3.19), (5.18)-(5.20), and (5.22)-(5.23). 

5.2 Case studies 

As shown in Table 5.1, both deterministic and robust cases are conducted to 

investigate the energy supply under the influence of 1) uncertain electric loads and solar 

power generation; 2) the battery; 3) the CHP; 4) the budget of robustness.  Δ݌௟௢௔ௗ
௧  is set to 

be within the range of [-4%, 5%] of the nominal electric loads; Δܪ௟௢௔ௗ
௧  lies in the range of  

[-9%, 10%] of the nominal thermal loads; Δ݌௦௢௟௔௥
௧  is within [-20%, 19%] of the nominal 

solar power generation. Table 5.2 summarizes the comparison of daily operating costs 

obtained for both deterministic and robust cases. 
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Table 5.1 Cases for deterministic and robust models 

Cases 1 2 3 4 5 

Power generation 

Electric grid  × × × × × 
Solar  × × × × 

Battery   × × × 
CHP     × 

Boiler    × × 

Loads 
Electric loads × × × × × 
Thermal loads    × × 

 

Table 5.2 Operating cost in cases 1-5 ($) 

Case 1 2 3 4 5 
Deterministic 184.7 143.5 138.2 211.1 172.3 

Robust 193.9 160.9 155.7 235.9 195.6 
Increase (%) 4.98 12.13 12.66 11.75 13.52 

 

5.2.1 Influence of electric loads and solar power generation 

As shown in Figure 5.1, compared with the deterministic Case 1, the uncertain 

electric loads lead to a much higher grid power supply in the robust Case 1 with an 

increase in cost by 4.98%. In Case 2, the integration of solar energy contributes to 

provide a portion of the electric loads, which can be observed from the reduction of grid 

power supply compared with Case 1. However, the robust Case 2 has a lower reduction 

as the solar power generation is reduced due to its uncertainty. Moreover, the combined 

influence of uncertain electric loads and solar power generation results in the increase in 

operating cost by 12.13%. 
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Figure 5.1 Grid power for cases 1 and 2 

 

5.2.2 Effect of the battery 

In Figure 5.2, the commitment of the battery causes the difference in grid power 

supply between Cases 2 and 3. As indicated in Figure 5.3, the battery is discharging 

during most of the hours with high energy purchasing price from the grid. Consequently, 

the grid power in Case 3 is lower than that in Case 2 (e.g. hours 9, 10, 12, 14, 19, 21, 22 

in the deterministic Case 3, and hours 10, 11, 13, 14, 19, 21, 22 in the robust Case 3). 

While the energy purchasing price is low enough, the battery is charging during hours 1, 

2, 7, 8, 15-18, 23 in the deterministic Case 3, and hours 1, 3, 5-8, 15, 17, 18, 23 in the 

robust Case 3. Therefore, the grid power in Case 3 is higher than the corresponding one 

in Case 2. There is no change in SOC at the remaining hours 3-5, 11, 20 in the 

deterministic Case 3 and at hours 9, 16, 20 in the robust Case 3. Due to the charging and 

discharging effect of the battery in Case 3, the total operating cost is reduced by 3.69% in 

deterministic Case 3 and by 3.23% in robust Case 3.  

By comparing the robust Case 3 with the deterministic Case 2, we explore the 

effect of the battery in alleviating the influence of additional power demand caused by the 
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uncertain electric loads and solar power generation. When the SOC of battery is 

increasing (which means the battery is charging) or keeps constant (which means the 

battery is idle) at hours 1, 3, 5-9, 12, 15-18, 20, 23 as shown in Figure 5.3, the additional 

power demand is totally supplied by the grid. When the SOC is decreasing (which means 

the battery is discharging) at hours 2, 4, 10, 11, 13, 14, 19, 21, 22, 24, the grid provides 

lower power and the battery not only supplies the additional power demand, but also 

covers a portion of normal building power. Therefore, the battery is effective in 

coordinating with the electric grid to meet the uncertain power demand. 

Without the battery, the robust Case 2 always needs a higher grid power supply 

than the deterministic Case 2 due to the combined influence of uncertain electric loads 

and solar power generation. However, with the battery, it is possible that the grid power 

supply in the robust Case 3 is lower than that in the deterministic Case 3 due to the 

response of the battery to uncertainties. For robust Cases 2 and 3 in Table 5.1, it can be 

seen that the daily operating cost increases by 8.5% with the battery, while it has a higher 

increase of 12.13% without the battery. Therefore, the battery is an economic means to 

supply uncertain power demand. 
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Figure 5.2 Effect of the battery on grid power (Cases 2 & 3) 

 

 

Figure 5.3 Effect of the battery on SOC of the battery (Case 3) 

 

5.2.3 Effect of the CHP 

In Figure 5.4, by coupling electric and thermal energy supply, the introduction of 

the CHP results in the reduction in the power supply from both the grid and battery in 

Case 5. Due to the response of the CHP to both uncertain electric and thermal energy 
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requests, the total operating cost is reduced by 18.38% in deterministic Case 5 and by 

17.08% in robust Case 5.  

Compared with the deterministic Case 4, when there is lower power supply from 

both the grid and battery in the robust Case 5, the CHP supplies the additional power 

demand at hours 1-14,17-24. When there is higher power supply from both the grid and 

battery during hours 15 and 16, the grid, battery and CHP contribute to the additional 

power demand together. Thus, the CHP is effective in coordinating with the grid and 

battery in supplying uncertain power demand.  

No matter whether the CHP is involved or not, the power supply from both the 

grid and battery in the robust Case is always higher than that in the corresponding 

deterministic Case because of the uncertain electric loads and solar generation. For robust 

Cases 4 and 5 in Table 5.1, it can be observed that the daily operating cost increases by 

11.75% without the CHP, while it decreases by 7.34% with the CHP. Therefore, the CHP 

is also an economic way to meet the uncertain power demand. 

In Figure 5.5, there is higher thermal supply in the robust Case 4 than in the 

deterministic Case 4 due to the uncertainty in the thermal loads. During hours 9-14 in the 

robust Case 5, the thermal supplied by the CHP is higher than the actual thermal demand 

which is the same as that in the robust Case 4. It means that the excess thermal supply 

from the CHP is exhausted when the energy purchasing price from the grid is relatively 

higher than the CHP generation cost.  
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Figure 5.4 Effect of the CHP on electric power supply from the grid and battery 

 

 

Figure 5.5 Effect of the CHP on thermal supply 

 

5.2.4 Influence of budget of robustness on the energy supply 

Figure 5.6 and Figure 5.7 shows the effect of budget of robustness in controlling 

the uncertain ranges of electric and thermal loads, and solar power generation. In Figure 

5.6, Γ2 is fixed at 1 to ensure the worst case thermal loads and Γ1 is adjusted from 0 to 2. 

Here, Γ1=0 means that no protection will be taken against uncertainties in the electric 

loads and solar power generation; Γ1=2 means that the protection against uncertainties in 

the electric loads and solar power generation are fully ensured. 
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Figure 5.6 Effect of budget of robustness on electric power supply (Γ2=1) 

 

Table 5.3 summarizes the change of operating cost as the increase of budget of 

robustness Γ1.  

Table 5.3 Operating cost with various Γ1 (Γ2=1) 

Γ1 Cost ($) Increase (%) 
0.0 172.3 0 
0.5 183.5 6.5 
0.8 186.6 8.3 
1.0 188.7 9.52 
1.3 190.8 10.74 
1.6 192.8 11.90 
1.8 194.2 12.71 
2.0 195.6 13.52 

 

In Figure 5.7, the worst case for the uncertain power demand caused by the 

uncertain electric loads and solar power generation is considered by fixing Γ1 at 2; and 

the uncertainty set of the thermal loads is enlarged by increasing the robustness Γ2 from 0 

to 1. It is observed that the additional thermal loads will be supplied by the boiler during 

hours 1-6, 18-24 and by the CHP at hours 7 and 8. However, no change happens in the 
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thermal output either from the CHP or from the boiler during hours 9-14, which means 

that the thermal supply during this period is enough to cover the uncertain thermal loads, 

and that the resulted excess thermal output is exhausted.  

 

Figure 5.7 Effect of budget of robustness on thermal power supply (Γ1=2) 

 

5.3 Conclusion 

This chapter presented a robust optimization model to coordinate the energy 

supplies from various energy sources including electric grid, battery, and CHP with boiler 

unit. The influence of the CHP unit and battery had been examined on energy supply 

against uncertainties in the energy-efficient building systems. The simulation results 

showed that the CHP unit and battery are indeed efficient and economical in alleviating 

the influence of uncertainties in the operation of the energy-efficient building. The 

robustness can also be adjusted to control the conservativeness of the proposed model. 
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CHAPTER VI 

ROBUST STOCHASTIC OPTIMAL OPERATION OF ENERGY-EFFICIENT 

BUILDINGS 

This chapter presents the construction of multiband uncertainty in robust 

stochastic optimization in order to achieve adaptability in RO through SP analysis for the 

optimal operation of energy-efficient building systems. This new method is designed to 

overcome the drawback of partial protection for the random outcomes in SP as well as 

the conservativeness of the solution in RO. The original uncertainty range of each 

random variable is partitioned into multiple sub-bands with the scenarios as the nominal 

value for each band. The uncertain variables can be immunized through discretized 

scenarios with partitioned uncertainty bands, the range of which can be adjusted by the 

parameter of robustness. If the number of scenarios decreases, the uncertainty band for 

each scenario could be enlarged; if the number of scenarios increases, then the individual 

uncertainty band will shrink. 

Our work differs from other methods in two apparently significant aspects. First, 

our approach offers flexible adaptability for decision variables through the adjustable 

multiband uncertainty on the basis of the multi-stage scenario tree. Secondly, the 

generated formulas can either be flexibly adapted to the particular instance of multi-stage 

SP when the individual uncertainty band shrinks to empty; or drop to the category of RO 

when no more than one scenario is considered. Therefore, the proposed approach is at 
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least as adaptive as SP, or as robust as RO. With fewer scenarios than in SP, the RSO 

approach takes into account all possible outcomes of uncertainties by considering the 

uncertainty sub-band for each scenario. Therefore, it is more robust than SP which 

merely considers the exact discrete scenarios. Meanwhile, it’s more flexible than the RO 

as the decision variables can be adapted to the stochastic process of uncertainties in the 

structure of multi-stage scenario tree. It would be superior to a substitution of the random 

parameters by single worst estimates as in RO or discretized scenarios as in SP. 

The main contributions in this chapter are summarized as follows, 

 A robust stochastic optimization model is formulated by introducing 

penalty terms in constraints, which in turn reflects the cost volatility due to 

the uncertain solar power generations, electric and thermal loads. The 

tractable form of the RSO model is achieved by the strong dual theory.  

 The multiband uncertainty set is established on the basis of the multi-stage 

scenario tree so that the combination of all the individual uncertainty sub-

bands can cover the complete uncertainty set. The robustness can be 

adjusted by the budget of uncertainty parameter. 

 With the uncovering of the uncertainties, the status variables for the 

energy output direction of electric grid, operation status of CHP, and 

charging/ discharging status of the battery can be adaptable based on the 

multi-stage scenario tree. The adaptability can be flexibly achieved 

through the adjustable multiband uncertainty. 

 With the realization of the uncertainty, the solution for the power dispatch 

from electric grid and CHP as well as state of charge of the battery are 



www.manaraa.com

 

94 

adjustable in real time, which can be realized through re-running the 

optimization problem with the already known status variables for the 

specific scenario.  

The rest of the chapter is organized as follows: section 6.2 discusses the 

construction of multiband uncertainty as well as the modeling and solution of the 

proposed robust stochastic method. Section 6.3 presents its application to energy-efficient 

building system. Section 6.4 shows the results of multiband uncertainty set necessary for 

the case study. Simulation results are analyzed in section 6.5 to validate the performance 

of the proposed RSO model. Finally, concluding remarks are drawn in section 6.6. 

6.1 Robust stochastic problem with multiband uncertainty 

To improve the robustness of the stochastic solutions and reduce the computation 

burden at the same time, a RSO model is proposed to combine both multi-stage SP model 

and RO-based model. In this RSO model, it is straightforward to minimize the expected 

cost of worst-case scenarios at each stage. This model applies a penalty term in 

constraints if the scenario at time t is bearing an uncertainty band. Besides, the strong 

dual theory is used to determine the tractable form of the corresponding min-max 

problem. 

6.1.1 Construction of the multiband uncertainty 

The formulation of the multi-stage SP is the foundation of the proposed RSO 

model, a general multi-stage SP model is presented in section 2.1, which will facilitate 

the introduction to the RSO model here. Once the multi-stage scenario tree is generated, 

the uncertain characteristics will be represented by the limited number of scenarios, 
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where the stochastic feature ensures that the status variables for the energy output 

direction of electric grid, operation status of CHP, and charging/ discharging status of the 

battery can be adapted according to the multi-stage scenario tree. However, the 

discretized scenarios may deviate from the realized data. In order to protect the operation 

of energy-efficient building against the uncertainties, scenarios ݒ௧௝ ൌ

ሺ ௦ܲ௢௟,௧௝,	 ௡ܲ௖,௧௝,ܪ௡௖,௧௝ሻ in electric balance (3.21) and thermal balance (3.22) are modeled as 

asymmetric and bounded variables ݒ෤௧௝ ൌ ሺ ෨ܲ௦௢௟,௧௝, ෨ܲ௡௖,௧௝,  ෩௡௖,௧௝ሻ, which take values inܪ
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           

 (6.2) 

We introduce the concept of multiband uncertainty range through the partition of 

the entire uncertain feasible set ൣݕ௞௧
௟ , ௞௧ݕ

௨ ൧ at time stage t for the uncertainty k, which 

refers to ሺ ௦ܲ௢௟,௧,	 ௡ܲ௖,௧, ܪ௡௖,௧ሻ. The lower and upper bounds can either be pre-defined, or 

obtained from the range of generated scenarios before the reduction. It turns out to be 

necessary to sort the total ܬ௧ scenarios in the sequence as (6.3),  

 ,1 , 1 , , 1 , t

l u
kt kt kt j kt j kt j kt J kty y y y y y y         (6.3) 

The individual uncertainty band should cover the range between two adjacent 

scenarios. It will be determined by the distance of the nearest scenarios. For example, the 

right hand side ݕො௞௧,௝
௨  of the uncertainty band is half of the distance between the scenario j 
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and its nearest upper scenario j+1 in (6.4); the left hand side ݕො௞௧,௝
௟  of the uncertainty band 

is half of the distance between the scenario j and its nearest lower scenario j-1 in (6.5). 

 , , 1 ,ˆ ( ) 2u
kt j kt j kt jy y y   (6.4) 

 , , 1 ,ˆ ( ) 2l
kt j kt j kt jy y y   (6.5) 

Specifically, for the scenario ܬ௧ closest to the upper bound ݕ௞௧
௨  at time t, the right 

hand side ݕො௞௧,௃೟
௨  of the uncertainty band is the distance between the scenario ܬ௧ and the 

upper bound in (6.6). For the scenario closest to the lower bound ݕ௞௧
௟ , the left hand side 

ො௞௧,ଵݕ
௟ 	of the uncertainty band is the difference between the scenario and the lower bound 

in (6.7). 

 , ,ˆ
t t

u u
kt J kt kt Jy y y   (6.6) 

 ,1 ,1ˆl l
kt kt kty y y   (6.7) 

Therefore, the partitioned uncertainty band ܼ௞௧,௝ for the uncertainty k for scenario 

j at time stage t is defined as ൣݕ௞௧,௝
௟ , ௞௧,௝ݕ

௨ ൧, with the scenario j at time stage t as the 

nominal value for each individual uncertainty band of the uncertainty k, 

 , , , , , , , ,ˆ ˆ ˆ ˆ{ [ , ] 0, 0}l u u l
kt j kt j kt j kt j kt j kt j kt j kt jZ y y y y y y y       (6.8) 

The overall uncertainty set ܼ௞௧ which consists of ܬ௧ bands is as below. 

 ,1 , tkt kt kt JZ Z Z    (6.9) 

By defining the lower and upper scaled deviations ߟ௞௧௝
௟ , ௞௧௝ߟ

௨ , the uncertainty band 

ܼ௞௧,௝ can be expressed as, 
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 , , , , , , , , ,ˆ ˆ{ 0 , 1}l l u u u l
kt j kt j kt j kt j kt j kt j kt j kt j kt jZ y y y y          (6.10) 

It’s unlikely that all of the entries in ݕ௞௧,௝ will change, so we can control the total 

scaled variations of ݕ௞௧,௝ by introducing the budget parameter Γ௧௝ as follows, 

 
, ,( )

tj

u l
kt j kt j tjk I

 


    (6.11) 

The uncertainty band (6.10) can then be adjusted through the budget of robustness 

Γ௧௝ within the interval ൣ0, หܫ௧௝ห൧, where หܫ௧௝ห indicates the number of  coefficients in a 

certain constraint for scenario j at time stage t subject to uncertain parameters. When 

Γ௧௝ ൌ 0, the scenario at time t is bearing no uncertainty band; However, when Γ௧௝ ൌ หܫ௧௝ห, 

then the scenario will reach its worst value of the individual uncertainty band ܼ௞௧,௝ in 

which it falls; Otherwise, if Γ௧௝ ൏ หܫ௧௝ห, only part of the uncertainty band ܼ௞௧,௝ will be 

covered.  

If the history until stage r is ߦோ, and the space of possible outcomes at stage r+1 is 

Ω௥ାଵሺߦோሻ, the feasible region is therefore established with adjustable multiband 

uncertainty. 

 1 1
( )

r r R
     (6.12) 

 , ,1 ,
( { ( ) }, , , , , ,ˆ ˆ) , | 1,..,u l

kt j kt jk Ir R kr j tj

l l u u
Z kt j kt j kt j kt j kt j kt j tjy y y y t r              (6.13) 

6.1.2 RSO model and solution 

With the feasible region (6.12)-(6.13) for the uncertain loads and intermittent 

solar power output, the RSO model can then be proposed for the operation problem of 

energy-efficient building, where uncertainties reside in the electric and thermal balance 
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constraint (3.21)-(3.22). Therefore, it is assumed that the uncertain parameter exist in the 

coefficient of the constraints in recursive equations. The equivalence of the static and 

adaptive robust model with constraint-wise uncertainty therefore ensures that the 

solutions for the power dispatch from electric grid and CHP as well as charging/ 

discharging rate of the battery are adjustable in real time. 

Because the decision ݔ௥ିଵ is already known at stage r, so the uncertainty exists in 

the right-hand side of the constraint (2.25). Each scenario in the RSO problem attains the 

highest possible value of the uncertainty band in which it falls, and then the robust 

counterpart is defined as 

 1 1( ) [ ( )]r r r r r rQ x Min c x E Q x    (6.14) 

s.t. 
1 1

1 1
( )

( )
r r R

r r r R r rW x Max h T x
 


 

 
  , r rx X  (6.15) 

Assume the distribution of the random event ݓ௥ାଵ is discrete with a probability 

 ,௪ೝశభ, then the recursive equation (6.14)-(6.15) at stage r isߩ

 
11 1( ) ( )

rr r r r w r rQ x Min c x Q x
    (6.16) 

s.t. , ,
,

1, 1,

({ 1, , ; 1, , })

, , 1, ,
kt j kt j

rj rj rj kt j tj
y Z

r j r j rj rj r

W x Max h y t r k I

T x x X j J



 

  

  

 


 (6.17) 

The idea of the RSO approach is to compute optimal solutions for each scenario 

that retain feasibility for all possible realizations of uncertainties within the partitioned 

uncertainty band ܼ௞௧,௝. In order to reduce the complexity of the description for the 

dualization of the RSO model, the right hand side of (6.17) can be defined as 
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, ,

, 1, 1,1
({ }) , 1, , ; 1, ,

kt j kt j

r

tj rj kt j r j r j tjt y Z
Max b Max h y T x t r k I  

       (6.18) 

Then, the RSO problem can be described as 

 
11 1( ) ( )

rr r r r w r rQ x Min c x Q x
    (6.19) 

s.t.  
1

r

rj rj tjt
W x Max b


   (6.20) 

 rj rj rjl x u  , 1, , tj J   (6.21) 

With the scaled deviations as defined in (6.10), we consider the following 

problem: 

 
11 1( ) ( )

rr r r r w r rQ x Min c x Q x
    (6.22) 

s.t. , , , , ,1 1
ˆ ˆ( )

tj

r r l l u u
rj rj kt j kt j kt j kt j kt jt k t k I

W x b Max b b 
  

       (6.23) 

 rj rj rjl x u   (6.24) 

 
, ,( )

tj

u l
kt j kt j tjk I

 


    (6.25) 

 , ,0 , 1u l
kt j kt j    (6.26) 

Thus, the auxiliary problem which needs to be solved at time stage t is, 

 
, , , ,

ˆ ˆ( )
tj

l l u u
kt j kt j kt j kt jk I

Max b b 


  subject to (6.25)-(6.26). (6.27) 

In order to make this bi-level min-max model computationally tractable, this 

maximization problem is then be represented as a minimization problem through strong 

duality theory since the feasible set is nonempty and bounded. The dual of problem (6.27) 

is shown as problem (6.28)-(6.31), 
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, ,( )

tj

u l
tj tj kt j kt jk I

Min   


    (6.28) 

s.t.  , ,
ˆu u

tj kt j kt jb    (6.29) 

 , ,
ˆl l

tj kt j kt jb    (6.30) 

 , ,,  , 0u l
tj kt j kt j    , , tjt k J 

 (6.31)
 

Where ߣ௧௝, ௞௧,௝ߨ
௨ , ௞௧,௝ߨ

௟  are the dual decision variables. 

By considering the multiband uncertainty set ܼ௞௧,௝ and incorporating the 

formulations (6.28)-(6.31) into the original problem (6.18)-(6.21), the uncertain linear 

programming problem (6.22)-(6.26) has the following robust linear counterpart: 

RSO (LPz): 

 
11 1( ) ( )

rr r r r w r rQ x Min c x Q x
    (6.32) 

s.t. 
, , ,[ ( )]

tj

u l
rj rj kt j tj tj kt j kt jt k k I

W x b   


        (6.33) 

 , ,
ˆu u

tj kt j kt jb   , , ,
ˆl l

tj kt j kt jb    (6.34) 

 , ,,  , 0u l
tj kt j kt j     (6.35) 

 rj rj rjl x u  , , tjr k I 
 (6.36)

 

Hence, the RSO problem (6.16)-(6.17) can be rewritten in the form of a single 

large-scale linear programming problem (6.32)-(6.36), which can also be extended to 

mixed integer linear programming problem. Apparently, the RSO model can be regarded 

as a combination of SP problems under multiband uncertainty sets. 
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,1 ,

( ) ( )
kt kt Jt

Z Z ZRSO LP SP LP LP    (6.37) 

If the uncertainty feasible region ܼ௞௧,௝ for each scenario drops to empty, then we 

have 

 
,

( ) ( )lim kt j
ZZ

RSO LP SP LP


  (6.38) 

Similarly, the RSO model can also be viewed as the expected value of the RO 

models for all the scenarios. 

 1( ) [ ( )]
tZ JRSO LP E RO LP LP    (6.39) 

If the number of scenarios becomes one, then the RSO model will be  

 
1, 1, ,

( ) ( )lim t
ZJ t T

RSO LP RO LP
 

  (6.40) 

The combination of all the sub uncertainty bands can cover the overall uncertainty 

set as in the RO model. However, there is a trade-off between the number of scenarios 

and the range of the individual uncertainty band. If there are more scenarios, then the 

partitioned uncertainty set will be narrowed down. If the number of scenarios decreases, 

then the uncertainty range would be enlarged. The number of scenarios will determine the 

flexibility of the RSO model. The more scenarios are considered, the more flexible the 

RSO approach becomes compared with the RO model. The advantage of the RSO model 

over the RO model is that one can increase the number of scenarios in order to increase 

the flexibility. In other words, it overcomes the conservativeness in the RO model by 

introducing the idea of scenarios from the traditional SP method. The loss of information 

with limited scenarios in the SP model can be overcome by incorporating the additional 
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information in the individual uncertainty band for each scenario, therefore protecting 

uncertainties in the RSO model. 

6.2 Robust stochastic formulation 

In order to apply the proposed RSO model to the operation of energy-efficient 

building, the uncertainties are defined as in (6.41)-(6.43) for solar power generation, 

electric and thermal loads, respectively. 

 , , , , , ,
ˆ ˆu u l l

sol tj sol tj s tj sol tj s tj sol tjP P P P     (6.41) 

 , , , , , ,
ˆ ˆu u l l

load tj load tj p tj load tj p tj load tjP P P P     (6.42) 

 , , , ,
ˆ ˆu u l l

load tj load tj h tj load tj h loadH H H H     (6.43) 

The relative and scaled deviations should meet the following requirements, 

 , , ,
ˆ ˆ ˆ, , 0u u u
load tj sol tj load tjP P H  , , , ,

ˆ ˆ ˆ, , 0l l l
load tj sol tj load tjP P H   (6.44) 

 , , , , , ,0 , , , , , 1u l u l u l
p tj p tj s tj s tj h tj h tj        (6.45) 

For both electric and thermal loads, the worst case occurs when the increase in the 

electric and thermal loads reach the maximum value; but for the solar power output, its 

worst case happens when the maximum decrease in solar power generation arrives. The 

robust counterpart of multi-stage SP model with multiband uncertainty set is described as 

 , , , , , , , 1[ ( )] [ ]t gf t gf tj gt t gt tj gas t chp tj boil tj tQ Min C P C P C F F E Q         (6.46) 

s.t. , , , , 1,
u l u l
p tj p tj s tj s tj tj         (6.47) 

 , , 2,
u l
h tj h tj tj    (6.48) 
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 , , , , , , ,max{ }gf tj gt tj chp tj bc tj bd tj load tj sol tjP P P P P P P        (6.49) 

 , , , , ,( ) max{ }hc chp tj boi tj load tj exh tj load tjH H H H H       (6.50) 

and constraints (4.4)-(4.18). 

To get the tractable form of the above RSO problem with the dualization method 

as introduced in the previous section, the dual form of constraints (6.47)-(6.50) can be 

reformulated as the following equivalent linear formulation,  

s.t.  , , , , , , , 1, 1, 11, 11, 12, 12,
u l u l

gf tj gt tj chp tj bc tj bd tj load tj sol tj tj tj tj tj tj tjP P P P P P P                

  (6.51) 

 , , , , 2, 2, 21, 21,( ) u l
hc chp tj boi tj load tj exh tj tj tj tj tjH H H H           (6.52) 

 1, 11,, ,ˆu u
tj tj load tjp    (6.53) 

 1, 11, ,ˆl l
tj tj load tjp    (6.54) 

  1, 12, ,ˆu u
tj tj sol tjp    , 1, 12, ,ˆl l

tj tj sol tjp     (6.55) 

 2, 21, ,
ˆu u

tj tj load tjH    (6.56) 

 2, 21, ,
ˆl l

tj tj load tjH    (6.57) 

 1, 11, 11, 12, 12, 2, 21, 21,,  , , , , , , 0u l u l u l
tj tj tj tj tj tj tj tj          (6.58) 

The stochastic feature of RSO ensures that the energy output direction of electric 

grid, operation status of CHP, and charging/ discharging status of the battery can be 

adapted according to the multi-stage scenario tree, while the robust feature of RSO allows 
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that the power dispatch from electric grid and CHP as well as charging/ discharging rate 

of the battery are adjustable in real time. 

6.3 Multiband uncertainty set 

Uncertainties involving in both generation and demand sides are considered at the 

same time. Nine scenarios are generated through the multi-stage scenario tree generation 

and backward reduction technique. Therefore, the single uncertainty band is partitioned 

into 9 sub-bands. 

In RSO, each scenario is associated with an individual uncertainty band at a 

certain stage. Table 6.1 shows the worst-case hours (WCHs) in RSO. For the electric 

loads and solar power generation, WCH appears in different scenarios. Subtracting the 

solar power generation from the electric loads, the net power demand only reaches its 

worst value in RSO at hours listed in Table 6.1. It can be observed that the worst net 

power demand appears at hours when both the electric loads and solar power generation 

reach their worst value at the same time, or when the worst electric loads happen during 

the period without solar power generation. For each scenario in RSO, the worst case of 

thermal loads will only be at a few hours. Because the worst case occurs each hour in 

RO, then the RSO model is much more flexible and less conservative. 
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Table 6.1 Hours with worst case in RSO  

Scenarios 
Solar power 

supply 
Electric loads 

Net power 
demand 

Thermal loads 

S1 6,12 1,3,5,8,9,12,16,20 (1,3),12,20 1,3 
S2 6,8,11,17 1,3,5,17 (1,3),17 1,3,15,19 
S3 9 1,6,7,13,18 (1) 1,2,5,6,18,23 
S4 5 1,2,4,19 (1,2,4),19 1,4,7,9,14 
S5 -- 1,6 (1) 1,2,5,6,16 
S6 -- 1,6,14,22-24 (1), 22-24 1,2,5,6,20 
S7 5,14 1,2,4 (1,2,4) 1,4,8,10,12,17,22,24
S8 5,16 1,2,4,10,11,15,21 (1,2,4),21 1,4,11,21 
S9 6,7,10,13,15,18 1,3,5 (1,3) 1,3,13 

Note: () means hours without solar power output. 

6.3.1 Electric loads 

Figure 6.1 represents the partitioning of the single uncertainty set for electric 

loads. Figure 6.2 shows robust scenarios are usually more conservative where the worst 

case of the uncertainty is considered at each hour. Figure 6.3 compares the worst-case 

scenarios in RSO with that in RO for electric loads. 

 

Figure 6.1 The multiband uncertainty set for electric loads 
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Figure 6.2 The multiband uncertainty set for electric loads (S9: RO & RSO) 

 

 

Figure 6.3 Uncertain electric loads (RO & RSO) 

 

6.3.2 Solar energy 

Figure 6.4 represents the individual uncertainty sets for solar power generation. 

While Figure 6.5 compares scenarios in both RO and RSO. Figure 6.6 shows all of the 

scenarios in RSO compared with the worst case in RO. 
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Figure 6.4 The multiband uncertainty set for solar energy (S9) 

 

 

Figure 6.5 Solar energy (S9: RO & RSO) 
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Figure 6.6 Solar energy (RO & RSO) 

 

6.3.3 Net power demand 

Both the electric demand and solar power generation have a combined effect on 

the electric power supply for the building energy system. Figure 6.7 shows the uncertain 

power demand both in SP and RSO. Apparently, the RSO model has higher electric loads 

and lower solar power generation due to the consideration of the partitioned uncertainty 

set for each scenario in RSO. Therefore, the net power demand in RSO is always higher 

than that in the corresponding scenario of the SP model, because the net power demand 

reflects the total change of both electric loads and solar power generation. 
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Figure 6.7 Uncertain power demand (S9: SP & RSO) 

 

Figure 6.8 compares the scenarios in RO and RSO for net power demand, Figure 

6.9 shows that the net power demand is always higher in RSO than that in the 

corresponding scenario of the SP model due to the overall impact of uncertainties. Figure 

6.10 makes a comparison of the scenarios in RSO with the single worst case in RO. 

 

Figure 6.8 Net power demand (S9: RO & RSO) 
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Figure 6.9 Net power demand (S9: SP & RSO) 

 

 

Figure 6.10 Net power demand (RO & RSO) 

 

6.3.4 Thermal loads 

Figure 6.11 partitions the uncertainty set for thermal loads. Figure 6.12 compares 

the scenarios in both RO and RSO. From Figure 6.13 we can see that for each scenario in 

the RSO case, the worst case of thermal loads will only be at a few hours.  

0 2 4 6 8 10 12 14 16 18 20 22 24
20

40

60

80

100

120

140

hour

ne
t 

po
w

er
 d

em
an

d(
kW

)

 

 

SP

RSO

2 4 6 8 10 12 14 16 18 20 22 24
20

40

60

80

100

120

140

160

hour

ne
t p

ow
er

 d
em

an
d(

kW
)

 

 

RO



www.manaraa.com

 

111 

 

Figure 6.11 The multiband uncertainty set for thermal loads 

 

 

Figure 6.12 Thermal loads (S9: RO & RSO) 
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Figure 6.13 Thermal loads (RO & RSO) 
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Figure 6.14 Influence of robustness on the uncertainty set of thermal loads scenario 
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Table 6.2 Hours with higher grid power in RSO model compared with RO 

Scenarios Hours with higher grid power Surplus grid power (kW) 

S1 21 4.5705 

S2 
17 1.4763 

21 4.9901 

S3 

3 13.4284 

6 29.3669 

21 3.8629 

S4 
6 16.0356 

21 4.6846 

S5 

3 13.4284 

6 29.3669 

21 0.3511 

S6 

3 13.4284 

6 29.3669 

21 5.8178 

S7 6 16.0356 

S8 6 16.0356 

S9 
10 2.8784 

18 1.3299 
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Figure 6.15 Grid power supply (RO & RSO) 

 

 

Figure 6.16 Grid power supply (S9: RO & RSO) 

 

In Figure 6.17, the power from battery is fluctuating in both cases due to its 

charge and discharge behavior. For scenarios 1, 2, 9 (Figure 6.18), the power from 

battery is the same as that in the robust case during hours 1-9; for scenarios 4, 7, 8, the 

battery has the same power output during hours 1-3. While for other scenarios, the 

charging and discharging status are very different in both cases. 

0 2 4 6 8 10 12 14 16 18 20 22 24
-50

0

50

100

150

hour

G
rid

 p
ow

er
(k

W
)

 

 

RO

2 4 6 8 10 12 14 16 18 20 22 24
-50

0

50

100

150

hour

G
rid

 p
ow

er
(k

W
)

 

 

RO

RSO



www.manaraa.com

 

116 

 

Figure 6.17 Power supply from battery (RO & RSO) 

 

 

Figure 6.18 Battery power supply (S9: RO & RSO) 
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lower power output at hour 17 of scenario 2 in RSO than in RO, so the grid and battery 

power is higher correspondingly (Figure 6.19). 

For hours 1-6, 9-14, 18-24, the CHP unit constantly provides 55kW for electric 

demand either in all scenarios of RSO or in RO. But for hours 7-8, 15-17, the power 

output from the CHP unit is different as shown in Table 6.3. Usually, RSO has the lower 

CHP power output at hours without the worst net power demand, or equal to that in RO at 

hours with the worst net power demand. However, at hour 7 of scenario 2 and 7 in RSO, 

there are higher power output from CHP than in RO, which will coordinate with grid and 

battery to supply the uncertain net power demand. 

 

Figure 6.19 Power supply from grid and battery (RO & RSO) 

 

0 2 4 6 8 10 12 14 16 18 20 22 24
-40

-20

0

20

40

60

80

100

120

140

hour

G
rid

&
B

at
te

ry
 p

ow
er

(k
W

)

 

 

RO

RSO



www.manaraa.com

 

118 

 

Figure 6.20 Power supply from grid and battery (S9: RO & RSO) 

 

 

Figure 6.21 Power supply from CHP (RO & RSO) 

 

 

Figure 6.22 Power supply from CHP (S9: RO & RSO) 
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Table 6.3 Hours with different CHP power in RSO and RO 

               Hour 
Model 

H7 H8 H15 H16 H17 

RO 51.59 49.62 18.74 13.12 41.10 

RSO 

S1 48.96 35.90 12.09 7.88 25.85 
S2 52.04 36.17 18.74 9.08 24.63 
S3 46.86 42.54 12.86 5.19 28.52 
S4 51.59 36.63 14.11 5.00 26.91 
S5 50.60 31.50 12.33 13.12 21.68 
S6 40.17 38.09 10.86 6.20 32.03 
S7 52.38 49.62 13.46 5.00 41.10 
S8 42.62 40.22 11.48 7.06 24.06 
S9 44.71 41.54 10.18 7.36 30.28 

 

6.4.1.2 Thermal supply 

In Figure 6.23, the thermal output from the boiler in RSO is always lower than or 

equal to that in RO. For hours 7-17, 1) at hour 7 of scenario 4 and hour 8 of scenario 7 

with the worst thermal demand in RSO (Table 6.4), boiler output is the same as in RO, 

which also applies to CHP; 2) otherwise, boiler has no thermal output in both RSO and 

RO and therefore, the thermal loads will be covered totally by CHP. 

Similar to CHP power supply, the CHP unit constantly provides 70.79 kW for 

thermal demand either in all scenarios of RSO or in RO for hours 1-6, 9-14, 18-24 

(Figure 6.25). The higher thermal output from CHP at hour 7 of scenario 2 and 7 in RSO 

is due to the zero output from boiler. 
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Figure 6.23 Boiler thermal output (RO & RSO) 

 

 

Figure 6.24 Boiler thermal output (S9: RO & RSO) 

 

2 4 6 8 10 12 14 16 18 20 22 24
0

20

40

60

80

100

hour

B
oi

le
r 

th
er

m
al

 o
ut

pu
t(

kW
)

 

 

RO

RSO

2 4 6 8 10 12 14 16 18 20 22 24
0

20

40

60

80

100

hour

B
oi

le
r 

he
at

(k
W

)

 

 

Robust

adaptive



www.manaraa.com

 

121 

 

Figure 6.25 CHP thermal output (RO & RSO) 

 

 

Figure 6.26 CHP thermal output (S9: RO & RSO) 
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Table 6.4 Hours with variable CHP thermal supply  

Hour 
Model 

H7 H8 H15 H16 H17 

RO 67.10 64.97 31.55 25.47 55.76 

RSO 

S1 64.26 50.13 24.36 19.81 39.24 
S2 67.59 50.42 31.55 21.10 37.93 
S3 61.99 57.31 25.19 16.89 42.14 
S4 67.10 50.91 26.54 16.68 40.40 
S5 66.03 45.36 24.62 25.47 34.74 
S6 54.74 52.50 23.03 17.99 45.93 
S7 67.96 64.97 25.84 16.68 55.76 
S8 57.39 54.80 23.70 18.92 37.31 
S9 59.65 56.23 22.29 19.25 44.04 

 

There is extra thermal supply from the CHP in both RO and RSO during hours 9-

14 when the energy price from the grid is relatively high (Table 6.4). For other hours, the 

total thermal supply is just sufficient to meet the thermal demand which is higher in RO 

(Figure 6.27). 

 

Figure 6.27 Thermal loads and supply (S9: RO & RSO) 
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6.4.2 SP vs RSO models 

6.4.2.1 Power supply 

In Figure 6.28, the grid power in the adaptive case is always higher than that in 

the stochastic case because each scenario is considered with an uncertainty range in the 

RSO case. 

 

Figure 6.28 Power supply from grid (S9: SP & RSO) 

 

 

Figure 6.29 Power supply from battery (S9: SP & RSO) 
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Figure 6.30 Power supply from grid& battery (S9: SP & RSO) 

 

 

Figure 6.31 Power supply from CHP (S9: SP & RSO) 
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grid, battery, as well as the CHP will coordinate to supply the extra power demand at the 

same time.  

 

Figure 6.32 Power supply (S9: SP & RSO) 
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extra thermal demand introduced by the individual uncertainty band in RSO due to the 

constant CHP thermal output during hours 1-6 and 18-24, excluding hour 18 of scenario 4 

where CHP contributes to part of the extra thermal demand.  

 

Figure 6.33 Thermal supply from CHP and boiler (S9: SP & RSO) 

 

 

Figure 6.34 Comparison of thermal loads and supply (S9: SP & RSO) 
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6.4.3 Effectiveness of the budget of robustness 

In RSO, the budget of robustness is used to adjust the individual uncertainty range 

of different scenarios for each uncertainty. The uncertain electric loads and solar power 

generation are fixed by Γ1=2, so that the worst case for the net power demand won't be 

changed. The total power supply from the electric grid and battery is influenced by the 

power output of the CHP. The change of Γଶ would lead to the adjustment of power output 

from CHP unit corresponding to the altering thermal loads. With the change of the 

robustness Γଶ, the uncertain feasible region for each scenario will be flexibly adjusted to 

protect the uncertainty. With the change of the robustness Γଶ, the uncertain feasible 

region for thermal loads can be flexibly adjusted to protect the uncertainty. 

Correspondingly, the uncertainty band for electric loads and solar power generation can 

also be changed through the robustness Γ1 elastically. 

Figure 6.35, Figure 6.36, the total power supply from the electric grid and battery 

is influenced by the power output of the CHP because the uncertain electric loads and 

solar power generation are fixed by Γ1=2. 

 

Figure 6.35 Influence of robustness on grid power supply  
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Figure 6.36 Influence of robustness on battery power supply (S9) 
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Table 6.5 Hours with different power output from grid & battery 

Scenarios 
power  

                        output(kW)
Γ2 

Hours with different power output from grid & battery 

H7 H8 H15 H16 H17 

S1 

0 17.3705 43.8894 91.1640 91.1787 35.9500 

0.3 17.2992 43.8753 91.1464 91.0789 35.7486 
0.5 17.2517 43.8659 91.1348 91.0123 35.6144 
1 17.1328 43.8424 91.1056 90.8459 35.2787 

S2 

0 28.4712 42.8145 73.8773 41.2148 76.0508 
0.3 28.4601 42.7476 72.6110 40.9571 75.8866 
0.5 28.4528 42.7030 71.7667 40.7853 75.7771 
1 28.4344 42.5914 69.6561 40.3559 75.5034 

S3 

0 41.4691 29.7973 80.2055 69.4387 38.8338 
0.3 40.9122 29.6251 80.1017 69.4330 38.4693 
0.5 40.5409 29.5103 80.0325 69.3801 38.2264 
1 39.6127 29.2234 79.8594 69.2476 37.6189 

S4 

0 23.4240 29.9274 97.7901 H17: 34.8984 H18: 17.5829
0.3 21.7548 29.8582 97.6690 34.7804 17.3180 
0.5 27.2954 29.8121 97.5882 34.7018 17.3180 
1 24.5135 29.6968 97.3864 34.5051 17.3180 

S5 

0 19.6915 44.4057 105.2512 45.8059 44.5426 
0.3 19.2703 43.0991 105.1963 44.8499 43.8368 
0.5 18.9895 42.2280 105.1596 44.2126 43.3664 
1 18.2876 40.0502 105.0680 42.6193 42.1902 

S6 

0 31.9899 36.0411 88.5775 63.9414 34.1173 
0.3 31.7909 35.6712 88.5527 63.7173 33.7583 
0.5 31.6582 35.4246 88.5362 63.5678 33.5189 
1 31.3265 34.8081 88.4950 63.1943 32.9205 

S7 

0 31.0331 24.3262 80.1232  20.9497 
0.3 30.9434 20.3790 80.0478  18.5852 
0.5 30.8836 17.7475 79.9976  17.0089 
1 30.7341 17.8221 79.8720  13.0680 

S8 

0 30.8365 35.0614 119.8849 89.4895 48.4109 
0.3 30.3010 34.7935 119.7217 89.4552 48.4043 
0.5 29.9440 34.6149 119.6129 89.4323 48.3999 
1 29.0516 34.1684 119.3409 89.3750 48.3889 

S9 

0 33.9766 35.7120 119.5050 70.9369 37.3501 
0.3 33.8854 35.5839 119.3264 70.8809 37.1859 
0.5 33.8246 35.4985 119.2073 70.8436 37.0764 
1 33.6727 35.2849 118.9097 70.7503 36.8028 
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It is observed from Table 6.7 that the power output from CHP increases and that 

from the grid and battery decreases accordingly. For other hours when the power output 

from CHP doesn't change with the varying budget of robustness, the boiler supplies the 

extra thermal loads.  

From Figure 6.37, with the increase of the robustness Γଶ, the thermal loads will 

increase correspondingly. During hours 9-14 in Figure 6.39, the total thermal output from 

the CHP and boiler unit will not change with the adjustment of the robustness. The thermal 

output from the CHP increases with the robustness at hours 7-8&15-17 for scenarios 1-3, 

5-6, 8-9, and at hours 1-8,15,17-18 for scenario 4, at hours 7-8, 15,17 for scenario 7, while 

the boiler will increase the thermal output with the increase of the robustness except hours 

9-14 when the thermal loads are totally supplied by CHP. 

 

Figure 6.37 Influence of robustness on thermal loads and supply (S9) 
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Figure 6.38 Influence of robustness on thermal supply (S9) 

 

When the boiler is out of operation during hours 7-8 and 15-17, the CHP unit 

takes over the extra thermal demand introduced due to the enlarging uncertainty band 

with the increase of Γ2. 

 

Figure 6.39 Influence of robustness on thermal supply from CHP and boiler 
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Figure 6.40 Influence of robustness on thermal supply from CHP (S9) 

 

 

Figure 6.41 Influence of robustness on thermal supply from boiler (S9) 
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Table 6.6 Hours with different thermal output from CHP 

Scenarios 
CHP thermal    

                    output(kW)
Γ2 

Hours with different thermal output from CHP 

H7 H8 H15 H16 H17 

S1 

0 64.0023 50.0791 24.2932 19.4480 38.5192 
0.3 64.0794 50.0944 24.3122 19.5560 38.7372 
0.5 64.1308 50.1045 24.3248 19.6281 38.8825 
1 64.2594 50.1299 24.3564 19.8082 39.2457 

S2 

0 67.5551 50.1807 26.9824 20.1683 37.3344 
0.3 67.5670 50.2531 28.3528 20.4472 37.5121 
0.5 67.5750 50.3014 29.2664 20.6331 37.6306 
1 67.5949 50.4221 31.5504 21.0978 37.9268 

S3 

0 59.9844 56.6886 24.8161 16.6860 40.8234 
0.3 60.5871 56.8749 24.9285 16.6921 41.2178 
0.5 60.9888 56.9991 25.0034 16.7494 41.4807 
1 61.9933 57.3096 25.1906 16.8928 42.1381 

S4 

0 68.2818 50.6635 26.1087 H17: 39.9722 H18: 70.50728
0.3 70.0881 50.7384 26.2398 40.0999 70.7940 
0.5 64.0923 50.7883 26.3272 40.1850 70.7940 
1 67.1028 50.9131 26.5456 40.3978 70.7940 

S5 

0 64.5165 40.6524 24.4195 22.0273 32.1955 
0.3 64.9723 42.0664 24.4790 23.0619 32.9592 
0.5 65.2762 43.0097 24.5187 23.7516 33.4683 
1 66.0358 45.3658 24.6178 25.4758 34.7412 

S6 

0 54.0278 51.1627 22.9375 17.1794 44.637 
0.3 54.2431 51.5630 22.9643 17.4220 45.0259 
0.5 54.3867 51.8299 22.9821 17.5837 45.2849 
1 54.7457 52.4971 23.0268 17.9879 45.9325 

S7 

0 67.6347 57.9306 25.5652  47.2276 
0.3 67.7318 62.2022 25.6467  49.7863 
0.5 67.7965 65.0498 25.7010  51.4922 
1 67.9582 64.9691 25.8369  55.7568 

S8 

0 55.4636 53.8314 23.1160 18.7964 37.2868 
0.3 56.04306 54.1214 23.2926 18.8336 37.2940 
0.5 56.4294 54.3146 23.4103 18.8584 37.2987 
1 57.3951 54.7978 23.7046 18.9203 37.3106 

S9 

0 59.3267 55.7642 21.6490 19.0442 43.4528 
0.3 59.4254 55.9029 21.8423 19.1047 43.6305 
0.5 59.4911 55.9953 21.9712 19.1451 43.7489 
1 59.6556 56.2264 22.2933 19.2461 44.0451 
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Table 6.7 Comparison of power change in S9 (kW) 

Budget of robustness (Γ2) 
       Power output 
Energy  
resource 

Hour 

H7 H8 H15 H16 H17 

0 
CHP 59.33 55.76 21.65 19.04 43.45 

Grid & battery 33.98 35.71 119.51 70.94 37.35 

0.3 
CHP 59.42 55.90 21.84 19.10 43.63 

Grid&battery 33.88 35.58 119.33 70.88 37.18 

0.5 
CHP 59.49 55.99 21.97 19.14 43.75 

Grid&battery 33.82 35.50 119.21 70.84 37.08 

1 
CHP 59.65 56.23 22.29 19.25 44.04 

Grid&battery 33.67 35.28 118.91 70.75 36.80 

 

6.5 Conclusion  

In order to relieve the computational burden in power systems operations with the 

renewable penetration and inaccurate loads forecast, this chapter presented an innovative 

robust stochastic optimization model. The proposed approach not only overcomes the 

conservativeness in the robust model, but also circumvents the curse of dimensionality in 

the stochastic model. This method is different from other adaptive robust models in that it 

offers full adaptability for decision variables through the partition of the uncertain 

feasible region. Moreover, it does not require large number of scenarios but can protect 

uncertainties through the scenarios with each of them bearing an individual uncertainty 

band. The structure of the RSO model is designed to increase the adaptability while 

keeping the model computationally tractable. The numerical results showed the flexibility 

of the proposed method in dealing with uncertainty-related optimization problems. 
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CHAPTER VII 

CONCLUSION 

7.1 Contributions 

This dissertation addressed a challenging topic in smart grid-- the optimal 

operation of energy-efficient building with combined heat and power systems considering 

uncertainty from intermittent solar power generation and unpredictable energy 

consumption. The optimal scheduling problem is conducted specifically for individual 

end consumers with the goal of minimizing the daily operation cost. The scheduling of 

both controllable electric and thermal loads is optimized through mixed integer linear 

programming and could be realized through smart meters. The uncertainty modeling 

strategies are key to formulating different optimization models under uncertainty.  

In chapter II, the optimization methods under uncertainty has been reviewed, 

including multi-stage stochastic programming, robust optimization. The modeling of 

uncertainty is also described, followed by the introduction of multivariate auto-regressive 

moving average time series model, which is used to forecast the daily energy 

consumption and solar power production.  

In chapter III, in order to achieve maxima cost savings and reduce energy 

consumption overall, increase energy efficiency, in turn reducing emission of greenhouse 

gases, deterministic optimization of building energy consumption is formulated at the 

whole-building level to cover sub-systems such as HVAC, lighting, on-site generation 
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and storage. The hybrid energy system model is proposed which consists of cogeneration 

system and PV solar system.  

In chapter IV, the stochastic optimal operation of building energy system is 

investigated. Case studies are conducted including 1) the impact of CHP on energy 

supply. With the introducing of CHP system, the expected energy expenses could be 

effectively reduced by 17.6%. CHP is playing an important role in power supply through 

the collaborative operation with electric grid and battery. Meanwhile it cooperates with 

boiler unit in order to provide cost-effective thermal supply. The amount of energy 

production of CHP system depends on the relative price of electricity from the electric 

grid compared with that of natural gas. It constantly produces thermal power as much as 

74 kW per hour when electricity from the grid is relatively high. Moreover, it decreases 

the thermal output when the thermal demand is relatively low.  

2) the impact of battery on energy supply from CHP system and electric grid. The 

operation of battery would influence the power output from electric grid, but have no 

impact on power output from CHP system since it is determined by the thermal demand. 

The operation of battery could reduce the expected energy cost by 1.5%. 

3) the operation of interruptible electric loads is influenced by electricity price. 

The consideration of interruptible electric loads increases the expected daily operation 

cost by 5.6% compared with the case without interruptible electric loads. Power supply 

from CHP system is not changed. Both the power output from electric grid and battery 

would be changed accordingly in order to meet the extra operation requirement for 

interruptible electric loads. 
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4) the operation of interruptible thermal loads would increase the expected daily 

operation cost by 3.2% compared with the case without interruptible thermal loads. The 

scheduling of interruptible thermal loads is influenced by both electricity price and 

natural gas price. The maximum thermal output from the CHP unit decreases from 74.1 

kW per hour to 70.8 kW per hour, while the boiler unit increases its maximum thermal 

output from under 50 kW per hour to above 100 kW per hour to fulfill the operation 

requirement for interruptible thermal loads.  

Meanwhile, this chapter presented a very interesting hybrid approach combining 

multi-stage stochastic programming and rolling scheduling method for the optimal 

operation of energy-efficient buildings. This chapter successfully applied the hybrid 

approach to the optimal operation of energy-efficient building systems.  

In chapter V, the robust formulation of the optimal operation of building energy 

systems was proposed with the consideration of uncertainty from electric and thermal 

loads, as well as solar power production. Case studies are conducted including 1) the 

influence of uncertain electric grid and solar power generation. The uncertainty in electric 

loads increases the daily cost by 4.98%, while the consideration of uncertainty in both 

electric loads and solar power would increase the daily cost by 12.13%.  

2) The effect of battery in risk alleviation of energy supply against uncertainty. 

The total operating cost is reduced by 3.69% in deterministic case and by 3.23% in robust 

case. It shows that the battery is effective in coordinating with the electric grid to meet 

the uncertain power demand. 

3) The influence of CHP system. Due to the response of the CHP to both 

uncertain electric and thermal energy requests, the total operating cost is reduced by 
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18.38% in deterministic case and by 17.08% in robust case. It is reported that the CHP is 

effective in coordinating with the grid and battery in supplying uncertain power demand. 

Meanwhile, the CHP is also an economic way to meet the uncertain power demand. 

4) The adjustment of robustness. The daily operation cost would be changed with 

the adjustment of the robustness parameter. When no protection is taken against 

uncertainties in the electric loads and solar power generation, the operation cost reaches $ 

172.3 per day. When the protection against uncertainties in the electric loads and solar 

power generation are fully ensured, the operation cost reaches $ 195.6 per day, increased 

by 13.52%. 

In chapter VI, the novel robust stochastic method was proposed to solve the curse 

of dimension problem in stochastic programming, overcoming the conservativeness of 

robust optimization at the same time. The proposed approach offers flexible adaptability 

for decision variables through the adjustable multiband uncertainty on the basis of the 

multi-stage scenario tree. The generated formulas can either be flexibly adapted to the 

particular instance of multi-stage SP when the individual uncertainty band shrinks to 

empty; or drop to the category of RO when no more than one scenario is considered. The 

proposed framework is at least as adaptive as SP, or as robust as RO. With fewer 

scenarios than in SP, the RSO approach takes into account all possible outcomes of 

uncertainties by considering the uncertainty sub-band for each scenario. Therefore, it is 

more robust than SP which merely considers the exact discrete scenarios. Meanwhile, it’s 

more flexible than the RO as the decision variables can be adapted to the stochastic 

process of uncertainties in the structure of multi-stage scenario tree. It would be superior 
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to a substitution of the random parameters by single worst estimates as in RO or 

discretized scenarios as in SP. 

7.2 Suggestions for Further research 

Based on the research work conducted in this dissertation, potential research focus 

could be in the following areas: 

 Incorporate the price-responsive demand response into the optimal 

operation of building systems by taking into account of the elastic price 

information.  

 Consider the consumers’ comfort in the building with the application of 

thermostat devices.  

 Apply the stochastic and robust optimization method to other power 

system related optimization problem, such as power flow, state estimation, 

security constrained unit commitment, system-of-system based power 

issues. 

 Optimization of energy consumption at multi-building level is important 

in the future since micro-grid is widely developed in the world where on-

site generation and co-generation can supply efficient energy for the multi-

building system. 

 Advanced decomposition algorithm is essential to solve the optimization 

problem of building energy system with disturbance from occupants’ 

activities, price of electricity and other primary sources of energy, and 

outdoor weather conditions.  
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